3.2.4.1.2. sklearn.linear_model
.LarsCV¶
-
class
sklearn.linear_model.
LarsCV
(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv='warn', max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True, positive=False)[source]¶ Cross-validated Least Angle Regression model.
See glossary entry for cross-validation estimator.
Read more in the User Guide.
Parameters: - fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- verbose : boolean or integer, optional
Sets the verbosity amount
- max_iter : integer, optional
Maximum number of iterations to perform.
- normalize : boolean, optional, default True
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix cannot be passed as argument since we will use only subsets of X.- cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs,
KFold
is used.Refer User Guide for the various cross-validation strategies that can be used here.
Changed in version 0.20:
cv
default value if None will change from 3-fold to 5-fold in v0.22.- max_n_alphas : integer, optional
The maximum number of points on the path used to compute the residuals in the cross-validation
- n_jobs : int or None, optional (default=None)
Number of CPUs to use during the cross validation.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- eps : float, optional
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
- copy_X : boolean, optional, default True
If
True
, X will be copied; else, it may be overwritten.- positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default.
Deprecated since version 0.20: The option is broken and deprecated. It will be removed in v0.22.
Attributes: - coef_ : array, shape (n_features,)
parameter vector (w in the formulation formula)
- intercept_ : float
independent term in decision function
- coef_path_ : array, shape (n_features, n_alphas)
the varying values of the coefficients along the path
- alpha_ : float
the estimated regularization parameter alpha
- alphas_ : array, shape (n_alphas,)
the different values of alpha along the path
- cv_alphas_ : array, shape (n_cv_alphas,)
all the values of alpha along the path for the different folds
- mse_path_ : array, shape (n_folds, n_cv_alphas)
the mean square error on left-out for each fold along the path (alpha values given by
cv_alphas
)- n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.
See also
Examples
>>> from sklearn.linear_model import LarsCV >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_samples=200, noise=4.0, random_state=0) >>> reg = LarsCV(cv=5).fit(X, y) >>> reg.score(X, y) # doctest: +ELLIPSIS 0.9996... >>> reg.alpha_ 0.0254... >>> reg.predict(X[:1,]) array([154.0842...])
Methods
fit
(X, y)Fit the model using X, y as training data. get_params
([deep])Get parameters for this estimator. predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv='warn', max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True, positive=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
alpha
¶ DEPRECATED: Attribute alpha is deprecated in 0.19 and will be removed in 0.21. See
alpha_
instead
-
fit
(X, y)[source]¶ Fit the model using X, y as training data.
Parameters: - X : array-like, shape (n_samples, n_features)
Training data.
- y : array-like, shape (n_samples,)
Target values.
Returns: - self : object
returns an instance of self.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self