3.2.4.2.1. sklearn.linear_model
.LassoLarsIC¶
-
class
sklearn.linear_model.
LassoLarsIC
(criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False)[source]¶ Lasso model fit with Lars using BIC or AIC for model selection
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple.
Read more in the User Guide.
Parameters: - criterion : ‘bic’ | ‘aic’
The type of criterion to use.
- fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- verbose : boolean or integer, optional
Sets the verbosity amount
- normalize : boolean, optional, default True
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument.- max_iter : integer, optional
Maximum number of iterations to perform. Can be used for early stopping.
- eps : float, optional
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the
tol
parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.- copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
- positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (
alphas_[alphas_ > 0.].min()
when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached.
Attributes: - coef_ : array, shape (n_features,)
parameter vector (w in the formulation formula)
- intercept_ : float
independent term in decision function.
- alpha_ : float
the alpha parameter chosen by the information criterion
- n_iter_ : int
number of iterations run by lars_path to find the grid of alphas.
- criterion_ : array, shape (n_alphas,)
The value of the information criteria (‘aic’, ‘bic’) across all alphas. The alpha which has the smallest information criterion is chosen. This value is larger by a factor of
n_samples
compared to Eqns. 2.15 and 2.16 in (Zou et al, 2007).
See also
Notes
The estimation of the number of degrees of freedom is given by:
“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192.
https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_information_criterion
Examples
>>> from sklearn import linear_model >>> reg = linear_model.LassoLarsIC(criterion='bic') >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(reg.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...]
Methods
fit
(X, y[, copy_X])Fit the model using X, y as training data. get_params
([deep])Get parameters for this estimator. predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y, copy_X=True)[source]¶ Fit the model using X, y as training data.
Parameters: - X : array-like, shape (n_samples, n_features)
training data.
- y : array-like, shape (n_samples,)
target values. Will be cast to X’s dtype if necessary
- copy_X : boolean, optional, default True
If
True
, X will be copied; else, it may be overwritten.
Returns: - self : object
returns an instance of self.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self