3.2.4.1.10. sklearn.linear_model
.RidgeClassifierCV¶
-
class
sklearn.linear_model.
RidgeClassifierCV
(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None, store_cv_values=False)[source]¶ Ridge classifier with built-in cross-validation.
See glossary entry for cross-validation estimator.
By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.
Read more in the User Guide.
Parameters: - alphas : numpy array of shape [n_alphas]
Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to
C^-1
in other linear models such as LogisticRegression or LinearSVC.- fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- normalize : boolean, optional, default False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or a scorer callable object / function with signature
scorer(estimator, X, y)
.- cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
Refer User Guide for the various cross-validation strategies that can be used here.
- class_weight : dict or ‘balanced’, optional
Weights associated with classes in the form
{class_label: weight}
. If not given, all classes are supposed to have weight one.The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
- store_cv_values : boolean, default=False
Flag indicating if the cross-validation values corresponding to each alpha should be stored in the
cv_values_
attribute (see below). This flag is only compatible withcv=None
(i.e. using Generalized Cross-Validation).
Attributes: - cv_values_ : array, shape = [n_samples, n_targets, n_alphas], optional
Cross-validation values for each alpha (if
store_cv_values=True
andcv=None
). Afterfit()
has been called, this attribute will contain the mean squared errors (by default) or the values of the{loss,score}_func
function (if provided in the constructor).- coef_ : array, shape = [n_features] or [n_targets, n_features]
Weight vector(s).
- intercept_ : float | array, shape = (n_targets,)
Independent term in decision function. Set to 0.0 if
fit_intercept = False
.- alpha_ : float
Estimated regularization parameter
See also
Ridge
- Ridge regression
RidgeClassifier
- Ridge classifier
RidgeCV
- Ridge regression with built-in cross validation
Notes
For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifierCV >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) # doctest: +ELLIPSIS 0.9630...
Methods
decision_function
(X)Predict confidence scores for samples. fit
(X, y[, sample_weight])Fit the ridge classifier. get_params
([deep])Get parameters for this estimator. predict
(X)Predict class labels for samples in X. score
(X, y[, sample_weight])Returns the mean accuracy on the given test data and labels. set_params
(**params)Set the parameters of this estimator. -
__init__
(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None, store_cv_values=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
decision_function
(X)[source]¶ Predict confidence scores for samples.
The confidence score for a sample is the signed distance of that sample to the hyperplane.
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted.
-
fit
(X, y, sample_weight=None)[source]¶ Fit the ridge classifier.
Parameters: - X : array-like, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- y : array-like, shape (n_samples,)
Target values. Will be cast to X’s dtype if necessary
- sample_weight : float or numpy array of shape (n_samples,)
Sample weight.
Returns: - self : object
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Predict class labels for samples in X.
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape [n_samples]
Predicted class label per sample.
-
score
(X, y, sample_weight=None)[source]¶ Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self