3.2.4.1.9. sklearn.linear_model
.RidgeCV¶
-
class
sklearn.linear_model.
RidgeCV
(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)[source]¶ Ridge regression with built-in cross-validation.
See glossary entry for cross-validation estimator.
By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation.
Read more in the User Guide.
Parameters: - alphas : numpy array of shape [n_alphas]
Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to
C^-1
in other linear models such as LogisticRegression or LinearSVC.- fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- normalize : boolean, optional, default False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or a scorer callable object / function with signature
scorer(estimator, X, y)
.- cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if
y
is binary or multiclass,sklearn.model_selection.StratifiedKFold
is used, else,sklearn.model_selection.KFold
is used.Refer User Guide for the various cross-validation strategies that can be used here.
- gcv_mode : {None, ‘auto’, ‘svd’, eigen’}, optional
Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:
'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X
The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data.
- store_cv_values : boolean, default=False
Flag indicating if the cross-validation values corresponding to each alpha should be stored in the
cv_values_
attribute (see below). This flag is only compatible withcv=None
(i.e. using Generalized Cross-Validation).
Attributes: - cv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets, n_alphas], optional
Cross-validation values for each alpha (if
store_cv_values=True
andcv=None
). Afterfit()
has been called, this attribute will contain the mean squared errors (by default) or the values of the{loss,score}_func
function (if provided in the constructor).- coef_ : array, shape = [n_features] or [n_targets, n_features]
Weight vector(s).
- intercept_ : float | array, shape = (n_targets,)
Independent term in decision function. Set to 0.0 if
fit_intercept = False
.- alpha_ : float
Estimated regularization parameter.
See also
Ridge
- Ridge regression
RidgeClassifier
- Ridge classifier
RidgeClassifierCV
- Ridge classifier with built-in cross validation
Examples
>>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import RidgeCV >>> X, y = load_diabetes(return_X_y=True) >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) # doctest: +ELLIPSIS 0.5166...
Methods
fit
(X, y[, sample_weight])Fit Ridge regression model get_params
([deep])Get parameters for this estimator. predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y, sample_weight=None)[source]¶ Fit Ridge regression model
Parameters: - X : array-like, shape = [n_samples, n_features]
Training data
- y : array-like, shape = [n_samples] or [n_samples, n_targets]
Target values. Will be cast to X’s dtype if necessary
- sample_weight : float or array-like of shape [n_samples]
Sample weight
Returns: - self : object
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self