sklearn.linear_model
.LinearRegression¶
-
class
sklearn.linear_model.
LinearRegression
(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)[source]¶ Ordinary least squares Linear Regression.
Parameters: - fit_intercept : boolean, optional, default True
whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (e.g. data is expected to be already centered).
- normalize : boolean, optional, default False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
- n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation. This will only provide speedup for n_targets > 1 and sufficient large problems.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
Attributes: - coef_ : array, shape (n_features, ) or (n_targets, n_features)
Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features.
- intercept_ : array
Independent term in the linear model.
Notes
From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) wrapped as a predictor object.
Examples
>>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) >>> # y = 1 * x_0 + 2 * x_1 + 3 >>> y = np.dot(X, np.array([1, 2])) + 3 >>> reg = LinearRegression().fit(X, y) >>> reg.score(X, y) 1.0 >>> reg.coef_ array([1., 2.]) >>> reg.intercept_ # doctest: +ELLIPSIS 3.0000... >>> reg.predict(np.array([[3, 5]])) array([16.])
Methods
fit
(X, y[, sample_weight])Fit linear model. get_params
([deep])Get parameters for this estimator. predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y, sample_weight=None)[source]¶ Fit linear model.
Parameters: - X : array-like or sparse matrix, shape (n_samples, n_features)
Training data
- y : array_like, shape (n_samples, n_targets)
Target values. Will be cast to X’s dtype if necessary
- sample_weight : numpy array of shape [n_samples]
Individual weights for each sample
New in version 0.17: parameter sample_weight support to LinearRegression.
Returns: - self : returns an instance of self.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self