sklearn.pipeline
.FeatureUnion¶
-
class
sklearn.pipeline.
FeatureUnion
(transformer_list, n_jobs=None, transformer_weights=None)[source]¶ Concatenates results of multiple transformer objects.
This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer.
Parameters of the transformers may be set using its name and the parameter name separated by a ‘__’. A transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed by setting to ‘drop’ or
None
.Read more in the User Guide.
Parameters: - transformer_list : list of (string, transformer) tuples
List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer.
- n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- transformer_weights : dict, optional
Multiplicative weights for features per transformer. Keys are transformer names, values the weights.
See also
sklearn.pipeline.make_union
- convenience function for simplified feature union construction.
Examples
>>> from sklearn.pipeline import FeatureUnion >>> from sklearn.decomposition import PCA, TruncatedSVD >>> union = FeatureUnion([("pca", PCA(n_components=1)), ... ("svd", TruncatedSVD(n_components=2))]) >>> X = [[0., 1., 3], [2., 2., 5]] >>> union.fit_transform(X) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS array([[ 1.5 , 3.0..., 0.8...], [-1.5 , 5.7..., -0.4...]])
Methods
fit
(X[, y])Fit all transformers using X. fit_transform
(X[, y])Fit all transformers, transform the data and concatenate results. get_feature_names
()Get feature names from all transformers. get_params
([deep])Get parameters for this estimator. set_params
(**kwargs)Set the parameters of this estimator. transform
(X)Transform X separately by each transformer, concatenate results. -
__init__
(transformer_list, n_jobs=None, transformer_weights=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Fit all transformers using X.
Parameters: - X : iterable or array-like, depending on transformers
Input data, used to fit transformers.
- y : array-like, shape (n_samples, …), optional
Targets for supervised learning.
Returns: - self : FeatureUnion
This estimator
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit all transformers, transform the data and concatenate results.
Parameters: - X : iterable or array-like, depending on transformers
Input data to be transformed.
- y : array-like, shape (n_samples, …), optional
Targets for supervised learning.
Returns: - X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers.
-
get_feature_names
()[source]¶ Get feature names from all transformers.
Returns: - feature_names : list of strings
Names of the features produced by transform.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
set_params
(**kwargs)[source]¶ Set the parameters of this estimator.
Valid parameter keys can be listed with
get_params()
.Returns: - self
-
transform
(X)[source]¶ Transform X separately by each transformer, concatenate results.
Parameters: - X : iterable or array-like, depending on transformers
Input data to be transformed.
Returns: - X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers.