sklearn.pipeline
.make_union¶
-
sklearn.pipeline.
make_union
(*transformers, **kwargs)[source]¶ Construct a FeatureUnion from the given transformers.
This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting.
Parameters: - *transformers : list of estimators
- n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
Returns: - f : FeatureUnion
See also
sklearn.pipeline.FeatureUnion
- Class for concatenating the results of multiple transformer objects.
Examples
>>> from sklearn.decomposition import PCA, TruncatedSVD >>> from sklearn.pipeline import make_union >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=None, transformer_list=[('pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None)