Source code for sympy.matrices.expressions.matmul

from __future__ import print_function, division

from sympy import Number
from sympy.core import Mul, Basic, sympify
from sympy.core.compatibility import range
from sympy.functions import adjoint
from sympy.matrices.expressions.transpose import transpose
from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
        do_one, new)
from sympy.matrices.expressions.matexpr import (MatrixExpr, ShapeError,
        Identity, ZeroMatrix, GenericIdentity)
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.matrices import MatrixBase

# XXX: MatMul should perhaps not subclass directly from Mul
[docs]class MatMul(MatrixExpr, Mul): """ A product of matrix expressions Examples ======== >>> from sympy import MatMul, MatrixSymbol >>> A = MatrixSymbol('A', 5, 4) >>> B = MatrixSymbol('B', 4, 3) >>> C = MatrixSymbol('C', 3, 6) >>> MatMul(A, B, C) A*B*C """ is_MatMul = True def __new__(cls, *args, **kwargs): check = kwargs.get('check', True) if not args: return GenericIdentity() # This must be removed aggressively in the constructor to avoid # TypeErrors from GenericIdentity().shape args = filter(lambda i: GenericIdentity() != i, args) args = list(map(sympify, args)) obj = Basic.__new__(cls, *args) factor, matrices = obj.as_coeff_matrices() if check: validate(*matrices) if not matrices: # Should it be # # return Basic.__neq__(cls, factor, GenericIdentity()) ? return factor return obj @property def shape(self): matrices = [arg for arg in self.args if arg.is_Matrix] return (matrices[0].rows, matrices[-1].cols) def _entry(self, i, j, expand=True): from sympy import Dummy, Sum, Mul, ImmutableMatrix, Integer coeff, matrices = self.as_coeff_matrices() if len(matrices) == 1: # situation like 2*X, matmul is just X return coeff * matrices[0][i, j] indices = [None]*(len(matrices) + 1) ind_ranges = [None]*(len(matrices) - 1) indices[0] = i indices[-1] = j for i in range(1, len(matrices)): indices[i] = Dummy("i_%i" % i) for i, arg in enumerate(matrices[:-1]): ind_ranges[i] = arg.shape[1] - 1 matrices = [arg[indices[i], indices[i+1]] for i, arg in enumerate(matrices)] expr_in_sum = Mul.fromiter(matrices) if any(v.has(ImmutableMatrix) for v in matrices): expand = True result = coeff*Sum( expr_in_sum, *zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges) ) # Don't waste time in result.doit() if the sum bounds are symbolic if not any(isinstance(v, (Integer, int)) for v in ind_ranges): expand = False return result.doit() if expand else result def as_coeff_matrices(self): scalars = [x for x in self.args if not x.is_Matrix] matrices = [x for x in self.args if x.is_Matrix] coeff = Mul(*scalars) if coeff.is_commutative is False: raise NotImplementedError("noncommutative scalars in MatMul are not supported.") return coeff, matrices def as_coeff_mmul(self): coeff, matrices = self.as_coeff_matrices() return coeff, MatMul(*matrices) def _eval_transpose(self): return MatMul(*[transpose(arg) for arg in self.args[::-1]]).doit() def _eval_adjoint(self): return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit() def _eval_trace(self): factor, mmul = self.as_coeff_mmul() if factor != 1: from .trace import trace return factor * trace(mmul.doit()) else: raise NotImplementedError("Can't simplify any further") def _eval_determinant(self): from sympy.matrices.expressions.determinant import Determinant factor, matrices = self.as_coeff_matrices() square_matrices = only_squares(*matrices) return factor**self.rows * Mul(*list(map(Determinant, square_matrices))) def _eval_inverse(self): try: return MatMul(*[ arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1 for arg in self.args[::-1]]).doit() except ShapeError: from sympy.matrices.expressions.inverse import Inverse return Inverse(self) def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args # treat scalar*MatrixSymbol or scalar*MatPow separately mats = [arg for arg in self.args if arg.is_Matrix] expr = canonicalize(MatMul(*args)) return expr # Needed for partial compatibility with Mul def args_cnc(self, **kwargs): coeff_c = [x for x in self.args if x.is_commutative] coeff_nc = [x for x in self.args if not x.is_commutative] return [coeff_c, coeff_nc] def _eval_derivative_matrix_lines(self, x): from .transpose import Transpose with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)] lines = [] for ind in with_x_ind: left_args = self.args[:ind] right_args = self.args[ind+1:] right_mat = MatMul.fromiter(right_args) right_rev = MatMul.fromiter([Transpose(i).doit() for i in reversed(right_args)]) left_mat = MatMul.fromiter(left_args) left_rev = MatMul.fromiter([Transpose(i).doit() for i in reversed(left_args)]) d = self.args[ind]._eval_derivative_matrix_lines(x) for i in d: if i.transposed: i.append_first(right_mat) i.append_second(left_rev) else: i.append_first(left_rev) i.append_second(right_mat) lines.append(i) return lines
def validate(*matrices): """ Checks for valid shapes for args of MatMul """ for i in range(len(matrices)-1): A, B = matrices[i:i+2] if A.cols != B.rows: raise ShapeError("Matrices %s and %s are not aligned"%(A, B)) # Rules def newmul(*args): if args[0] == 1: args = args[1:] return new(MatMul, *args) def any_zeros(mul): if any([arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix) for arg in mul.args]): matrices = [arg for arg in mul.args if arg.is_Matrix] return ZeroMatrix(matrices[0].rows, matrices[-1].cols) return mul def merge_explicit(matmul): """ Merge explicit MatrixBase arguments >>> from sympy import MatrixSymbol, eye, Matrix, MatMul, pprint >>> from sympy.matrices.expressions.matmul import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = Matrix([[1, 1], [1, 1]]) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatMul(A, B, C) >>> pprint(X) [1 1] [1 2] A*[ ]*[ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [4 6] A*[ ] [4 6] >>> X = MatMul(B, A, C) >>> pprint(X) [1 1] [1 2] [ ]*A*[ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [1 1] [1 2] [ ]*A*[ ] [1 1] [3 4] """ if not any(isinstance(arg, MatrixBase) for arg in matmul.args): return matmul newargs = [] last = matmul.args[0] for arg in matmul.args[1:]: if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)): last = last * arg else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs) def xxinv(mul): """ Y * X * X.I -> Y """ from sympy.matrices.expressions.inverse import Inverse factor, matrices = mul.as_coeff_matrices() for i, (X, Y) in enumerate(zip(matrices[:-1], matrices[1:])): try: if X.is_square and Y.is_square: _X, x_exp = X, 1 _Y, y_exp = Y, 1 if isinstance(X, MatPow) and not isinstance(X, Inverse): _X, x_exp = X.args if isinstance(Y, MatPow) and not isinstance(Y, Inverse): _Y, y_exp = Y.args if _X == _Y.inverse(): if x_exp - y_exp > 0: I = _X**(x_exp-y_exp) else: I = _Y**(y_exp-x_exp) return newmul(factor, *(matrices[:i] + [I] + matrices[i+2:])) except ValueError: # Y might not be invertible pass return mul def remove_ids(mul): """ Remove Identities from a MatMul This is a modified version of sympy.strategies.rm_id. This is necesssary because MatMul may contain both MatrixExprs and Exprs as args. See Also ======== sympy.strategies.rm_id """ # Separate Exprs from MatrixExprs in args factor, mmul = mul.as_coeff_mmul() # Apply standard rm_id for MatMuls result = rm_id(lambda x: x.is_Identity is True)(mmul) if result != mmul: return newmul(factor, *result.args) # Recombine and return else: return mul def factor_in_front(mul): factor, matrices = mul.as_coeff_matrices() if factor != 1: return newmul(factor, *matrices) return mul def combine_powers(mul): # combine consecutive powers with the same base into one # e.g. A*A**2 -> A**3 from sympy.matrices.expressions import MatPow factor, mmul = mul.as_coeff_mmul() args = [] base = None exp = 0 for arg in mmul.args: if isinstance(arg, MatPow): current_base = arg.args[0] current_exp = arg.args[1] else: current_base = arg current_exp = 1 if current_base == base: exp += current_exp else: if not base is None: if exp == 1: args.append(base) else: args.append(base**exp) exp = current_exp base = current_base if exp == 1: args.append(base) else: args.append(base**exp) return newmul(factor, *args) rules = (any_zeros, remove_ids, xxinv, unpack, rm_id(lambda x: x == 1), merge_explicit, factor_in_front, flatten, combine_powers) canonicalize = exhaust(typed({MatMul: do_one(*rules)})) def only_squares(*matrices): """factor matrices only if they are square""" if matrices[0].rows != matrices[-1].cols: raise RuntimeError("Invalid matrices being multiplied") out = [] start = 0 for i, M in enumerate(matrices): if M.cols == matrices[start].rows: out.append(MatMul(*matrices[start:i+1]).doit()) start = i+1 return out from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict def refine_MatMul(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> expr = X * X.T >>> print(expr) X*X.T >>> with assuming(Q.orthogonal(X)): ... print(refine(expr)) I """ newargs = [] exprargs = [] for args in expr.args: if args.is_Matrix: exprargs.append(args) else: newargs.append(args) last = exprargs[0] for arg in exprargs[1:]: if arg == last.T and ask(Q.orthogonal(arg), assumptions): last = Identity(arg.shape[0]) elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions): last = Identity(arg.shape[0]) else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs) handlers_dict['MatMul'] = refine_MatMul