Matrix Expressions¶
The Matrix expression module allows users to write down statements like
>>> from sympy import MatrixSymbol, Matrix
>>> X = MatrixSymbol('X', 3, 3)
>>> Y = MatrixSymbol('Y', 3, 3)
>>> (X.T*X).I*Y
X**(-1)*X.T**(-1)*Y
>>> Matrix(X)
Matrix([
[X[0, 0], X[0, 1], X[0, 2]],
[X[1, 0], X[1, 1], X[1, 2]],
[X[2, 0], X[2, 1], X[2, 2]]])
>>> (X*Y)[1, 2]
X[1, 0]*Y[0, 2] + X[1, 1]*Y[1, 2] + X[1, 2]*Y[2, 2]
where X
and Y
are MatrixSymbol
’s rather than scalar symbols.
Matrix Expressions Core Reference¶
-
class
sympy.matrices.expressions.
MatrixExpr
[source]¶ Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.
Examples
>>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 3, 3) >>> y = MatrixSymbol('y', 3, 1) >>> x = (A.T*A).I * A * y
See also
-
T
¶ Matrix transposition.
-
as_explicit
()[source]¶ Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
>>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.as_explicit() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])
See also
as_mutable
returns mutable Matrix type
-
as_mutable
()[source]¶ Returns a dense, mutable matrix with elements represented explicitly
Examples
>>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.shape (3, 3) >>> I.as_mutable() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])
See also
as_explicit
returns ImmutableDenseMatrix
-
equals
(other)[source]¶ Test elementwise equality between matrices, potentially of different types
>>> from sympy import Identity, eye >>> Identity(3).equals(eye(3)) True
-
static
from_index_summation
(expr, first_index=None, last_index=None, dimensions=None)[source]¶ Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible.
This transformation expressed in mathematical notation:
\(\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}\)
Optional parameter
first_index
: specify which free index to use as the index starting the expression.Examples
>>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A.T*B
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) Trace(A)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B.T*A.T
-
-
class
sympy.matrices.expressions.
MatrixSymbol
[source]¶ Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions
Examples
>>> from sympy import MatrixSymbol, Identity >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix >>> A.shape (3, 4) >>> 2*A*B + Identity(3) I + 2*A*B
-
class
sympy.matrices.expressions.
MatAdd
[source]¶ A Sum of Matrix Expressions
MatAdd inherits from and operates like SymPy Add
Examples
>>> from sympy import MatAdd, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> C = MatrixSymbol('C', 5, 5) >>> MatAdd(A, B, C) A + B + C
-
class
sympy.matrices.expressions.
MatMul
[source]¶ A product of matrix expressions
Examples
>>> from sympy import MatMul, MatrixSymbol >>> A = MatrixSymbol('A', 5, 4) >>> B = MatrixSymbol('B', 4, 3) >>> C = MatrixSymbol('C', 3, 6) >>> MatMul(A, B, C) A*B*C
-
class
sympy.matrices.expressions.
Inverse
[source]¶ The multiplicative inverse of a matrix expression
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the
.inverse()
method of matrices.Examples
>>> from sympy import MatrixSymbol, Inverse >>> A = MatrixSymbol('A', 3, 3) >>> B = MatrixSymbol('B', 3, 3) >>> Inverse(A) A**(-1) >>> A.inverse() == Inverse(A) True >>> (A*B).inverse() B**(-1)*A**(-1) >>> Inverse(A*B) (A*B)**(-1)
-
class
sympy.matrices.expressions.
Transpose
[source]¶ The transpose of a matrix expression.
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the
transpose()
function, or the.T
attribute of matrices.Examples
>>> from sympy.matrices import MatrixSymbol, Transpose >>> from sympy.functions import transpose >>> A = MatrixSymbol('A', 3, 5) >>> B = MatrixSymbol('B', 5, 3) >>> Transpose(A) A.T >>> A.T == transpose(A) == Transpose(A) True >>> Transpose(A*B) (A*B).T >>> transpose(A*B) B.T*A.T
-
class
sympy.matrices.expressions.
Trace
[source]¶ Matrix Trace
Represents the trace of a matrix expression.
Examples
>>> from sympy import MatrixSymbol, Trace, eye >>> A = MatrixSymbol('A', 3, 3) >>> Trace(A) Trace(A)
-
class
sympy.matrices.expressions.
FunctionMatrix
[source]¶ Represents a Matrix using a function (Lambda)
This class is an alternative to SparseMatrix
>>> from sympy import FunctionMatrix, symbols, Lambda, MatPow, Matrix >>> i, j = symbols('i,j') >>> X = FunctionMatrix(3, 3, Lambda((i, j), i + j)) >>> Matrix(X) Matrix([ [0, 1, 2], [1, 2, 3], [2, 3, 4]])
>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
>>> isinstance(Y*Y, MatPow) # this is an expression object True
>>> (Y**2)[10,10] # So this is evaluated lazily 342923500
Block Matrices¶
Block matrices allow you to construct larger matrices out of smaller
sub-blocks. They can work with MatrixExpr
or
ImmutableMatrix
objects.
-
class
sympy.matrices.expressions.blockmatrix.
BlockMatrix
[source]¶ A BlockMatrix is a Matrix composed of other smaller, submatrices
The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression
>>> from sympy import (MatrixSymbol, BlockMatrix, symbols, ... Identity, ZeroMatrix, block_collapse) >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]])
>>> print(block_collapse(C*B)) Matrix([[X, Z + Z*Y]])
-
transpose
()[source]¶ Return transpose of matrix.
Examples
>>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix >>> from sympy.abc import l, m, n >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> B.transpose() Matrix([ [X.T, 0], [Z.T, Y.T]]) >>> _.transpose() Matrix([ [X, Z], [0, Y]])
-
-
class
sympy.matrices.expressions.blockmatrix.
BlockDiagMatrix
[source]¶ A BlockDiagMatrix is a BlockMatrix with matrices only along the diagonal
>>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols, Identity >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> BlockDiagMatrix(X, Y) Matrix([ [X, 0], [0, Y]])
-
sympy.matrices.expressions.blockmatrix.
block_collapse
(expr)[source]¶ Evaluates a block matrix expression
>>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, Matrix, ZeroMatrix, block_collapse >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]])
>>> print(block_collapse(C*B)) Matrix([[X, Z + Z*Y]])