Source code for sympy.matrices.expressions.trace
from __future__ import print_function, division
from sympy import Basic, Expr, sympify, S
from sympy.matrices.matrices import MatrixBase
from .matexpr import ShapeError
[docs]class Trace(Expr):
"""Matrix Trace
Represents the trace of a matrix expression.
Examples
========
>>> from sympy import MatrixSymbol, Trace, eye
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
"""
is_Trace = True
is_commutative = True
def __new__(cls, mat):
mat = sympify(mat)
if not mat.is_Matrix:
raise TypeError("input to Trace, %s, is not a matrix" % str(mat))
if not mat.is_square:
raise ShapeError("Trace of a non-square matrix")
return Basic.__new__(cls, mat)
def _eval_transpose(self):
return self
def _eval_derivative(self, v):
from sympy.matrices.expressions.matexpr import _matrix_derivative
return _matrix_derivative(self, v)
def _eval_derivative_matrix_lines(self, x):
r = self.args[0]._eval_derivative_matrix_lines(x)
for lr in r:
if lr.higher == 1:
lr.higher *= lr.first * lr.second.T
else:
# This is not a matrix line:
lr.higher *= Trace(lr.first * lr.second.T)
lr.first = S.One
lr.second = S.One
return r
@property
def arg(self):
return self.args[0]
def doit(self, **kwargs):
if kwargs.get('deep', True):
arg = self.arg.doit(**kwargs)
try:
return arg._eval_trace()
except (AttributeError, NotImplementedError):
return Trace(arg)
else:
# _eval_trace would go too deep here
if isinstance(self.arg, MatrixBase):
return trace(self.arg)
else:
return Trace(self.arg)
def _eval_rewrite_as_Sum(self, expr, **kwargs):
from sympy import Sum, Dummy
i = Dummy('i')
return Sum(self.arg[i, i], (i, 0, self.arg.rows-1)).doit()
def trace(expr):
"""Trace of a Matrix. Sum of the diagonal elements.
Examples
========
>>> from sympy import trace, Symbol, MatrixSymbol, pprint, eye
>>> n = Symbol('n')
>>> X = MatrixSymbol('X', n, n) # A square matrix
>>> trace(2*X)
2*Trace(X)
>>> trace(eye(3))
3
"""
return Trace(expr).doit()