from __future__ import division, print_function
import copy
from collections import defaultdict
from sympy.core.compatibility import Callable, as_int, is_sequence, range
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.functions import Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.utilities.iterables import uniq
from .common import a2idx
from .dense import Matrix
from .matrices import MatrixBase, ShapeError
[docs]class SparseMatrix(MatrixBase):
"""
A sparse matrix (a matrix with a large number of zero elements).
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> SparseMatrix(2, 2, range(4))
Matrix([
[0, 1],
[2, 3]])
>>> SparseMatrix(2, 2, {(1, 1): 2})
Matrix([
[0, 0],
[0, 2]])
See Also
========
sympy.matrices.dense.Matrix
"""
def __new__(cls, *args, **kwargs):
self = object.__new__(cls)
if len(args) == 1 and isinstance(args[0], SparseMatrix):
self.rows = args[0].rows
self.cols = args[0].cols
self._smat = dict(args[0]._smat)
return self
self._smat = {}
if len(args) == 3:
self.rows = as_int(args[0])
self.cols = as_int(args[1])
if isinstance(args[2], Callable):
op = args[2]
for i in range(self.rows):
for j in range(self.cols):
value = self._sympify(
op(self._sympify(i), self._sympify(j)))
if value:
self._smat[(i, j)] = value
elif isinstance(args[2], (dict, Dict)):
# manual copy, copy.deepcopy() doesn't work
for key in args[2].keys():
v = args[2][key]
if v:
self._smat[key] = self._sympify(v)
elif is_sequence(args[2]):
if len(args[2]) != self.rows*self.cols:
raise ValueError(
'List length (%s) != rows*columns (%s)' %
(len(args[2]), self.rows*self.cols))
flat_list = args[2]
for i in range(self.rows):
for j in range(self.cols):
value = self._sympify(flat_list[i*self.cols + j])
if value:
self._smat[(i, j)] = value
else:
# handle full matrix forms with _handle_creation_inputs
r, c, _list = Matrix._handle_creation_inputs(*args)
self.rows = r
self.cols = c
for i in range(self.rows):
for j in range(self.cols):
value = _list[self.cols*i + j]
if value:
self._smat[(i, j)] = value
return self
def __eq__(self, other):
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, SparseMatrix):
return self._smat == other._smat
elif isinstance(other, MatrixBase):
return self._smat == MutableSparseMatrix(other)._smat
def __getitem__(self, key):
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._smat.get((i, j), S.Zero)
except (TypeError, IndexError):
if isinstance(i, slice):
# XXX remove list() when PY2 support is dropped
i = list(range(self.rows))[i]
elif is_sequence(i):
pass
elif isinstance(i, Expr) and not i.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if i >= self.rows:
raise IndexError('Row index out of bounds')
i = [i]
if isinstance(j, slice):
# XXX remove list() when PY2 support is dropped
j = list(range(self.cols))[j]
elif is_sequence(j):
pass
elif isinstance(j, Expr) and not j.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if j >= self.cols:
raise IndexError('Col index out of bounds')
j = [j]
return self.extract(i, j)
# check for single arg, like M[:] or M[3]
if isinstance(key, slice):
lo, hi = key.indices(len(self))[:2]
L = []
for i in range(lo, hi):
m, n = divmod(i, self.cols)
L.append(self._smat.get((m, n), S.Zero))
return L
i, j = divmod(a2idx(key, len(self)), self.cols)
return self._smat.get((i, j), S.Zero)
def __setitem__(self, key, value):
raise NotImplementedError()
def _cholesky_solve(self, rhs):
# for speed reasons, this is not uncommented, but if you are
# having difficulties, try uncommenting to make sure that the
# input matrix is symmetric
#assert self.is_symmetric()
L = self._cholesky_sparse()
Y = L._lower_triangular_solve(rhs)
rv = L.T._upper_triangular_solve(Y)
return rv
def _cholesky_sparse(self):
"""Algorithm for numeric Cholesky factorization of a sparse matrix."""
Crowstruc = self.row_structure_symbolic_cholesky()
C = self.zeros(self.rows)
for i in range(len(Crowstruc)):
for j in Crowstruc[i]:
if i != j:
C[i, j] = self[i, j]
summ = 0
for p1 in Crowstruc[i]:
if p1 < j:
for p2 in Crowstruc[j]:
if p2 < j:
if p1 == p2:
summ += C[i, p1]*C[j, p1]
else:
break
else:
break
C[i, j] -= summ
C[i, j] /= C[j, j]
else:
C[j, j] = self[j, j]
summ = 0
for k in Crowstruc[j]:
if k < j:
summ += C[j, k]**2
else:
break
C[j, j] -= summ
C[j, j] = sqrt(C[j, j])
return C
def _diagonal_solve(self, rhs):
"Diagonal solve."
return self._new(self.rows, 1, lambda i, j: rhs[i, 0] / self[i, i])
def _eval_inverse(self, **kwargs):
"""Return the matrix inverse using Cholesky or LDL (default)
decomposition as selected with the ``method`` keyword: 'CH' or 'LDL',
respectively.
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix([
... [ 2, -1, 0],
... [-1, 2, -1],
... [ 0, 0, 2]])
>>> A.inv('CH')
Matrix([
[2/3, 1/3, 1/6],
[1/3, 2/3, 1/3],
[ 0, 0, 1/2]])
>>> A.inv(method='LDL') # use of 'method=' is optional
Matrix([
[2/3, 1/3, 1/6],
[1/3, 2/3, 1/3],
[ 0, 0, 1/2]])
>>> A * _
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
"""
sym = self.is_symmetric()
M = self.as_mutable()
I = M.eye(M.rows)
if not sym:
t = M.T
r1 = M[0, :]
M = t*M
I = t*I
method = kwargs.get('method', 'LDL')
if method in "LDL":
solve = M._LDL_solve
elif method == "CH":
solve = M._cholesky_solve
else:
raise NotImplementedError(
'Method may be "CH" or "LDL", not %s.' % method)
rv = M.hstack(*[solve(I[:, i]) for i in range(I.cols)])
if not sym:
scale = (r1*rv[:, 0])[0, 0]
rv /= scale
return self._new(rv)
def _eval_Abs(self):
return self.applyfunc(lambda x: Abs(x))
def _eval_add(self, other):
"""If `other` is a SparseMatrix, add efficiently. Otherwise,
do standard addition."""
if not isinstance(other, SparseMatrix):
return self + self._new(other)
smat = {}
zero = self._sympify(0)
for key in set().union(self._smat.keys(), other._smat.keys()):
sum = self._smat.get(key, zero) + other._smat.get(key, zero)
if sum != 0:
smat[key] = sum
return self._new(self.rows, self.cols, smat)
def _eval_col_insert(self, icol, other):
if not isinstance(other, SparseMatrix):
other = SparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if col >= icol:
col += other.cols
new_smat[(row, col)] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[(row, col + icol)] = val
return self._new(self.rows, self.cols + other.cols, new_smat)
def _eval_conjugate(self):
smat = {key: val.conjugate() for key,val in self._smat.items()}
return self._new(self.rows, self.cols, smat)
def _eval_extract(self, rowsList, colsList):
urow = list(uniq(rowsList))
ucol = list(uniq(colsList))
smat = {}
if len(urow)*len(ucol) < len(self._smat):
# there are fewer elements requested than there are elements in the matrix
for i, r in enumerate(urow):
for j, c in enumerate(ucol):
smat[i, j] = self._smat.get((r, c), 0)
else:
# most of the request will be zeros so check all of self's entries,
# keeping only the ones that are desired
for rk, ck in self._smat:
if rk in urow and ck in ucol:
smat[(urow.index(rk), ucol.index(ck))] = self._smat[(rk, ck)]
rv = self._new(len(urow), len(ucol), smat)
# rv is nominally correct but there might be rows/cols
# which require duplication
if len(rowsList) != len(urow):
for i, r in enumerate(rowsList):
i_previous = rowsList.index(r)
if i_previous != i:
rv = rv.row_insert(i, rv.row(i_previous))
if len(colsList) != len(ucol):
for i, c in enumerate(colsList):
i_previous = colsList.index(c)
if i_previous != i:
rv = rv.col_insert(i, rv.col(i_previous))
return rv
@classmethod
def _eval_eye(cls, rows, cols):
entries = {(i,i): S.One for i in range(min(rows, cols))}
return cls._new(rows, cols, entries)
def _eval_has(self, *patterns):
# if the matrix has any zeros, see if S.Zero
# has the pattern. If _smat is full length,
# the matrix has no zeros.
zhas = S.Zero.has(*patterns)
if len(self._smat) == self.rows*self.cols:
zhas = False
return any(self[key].has(*patterns) for key in self._smat) or zhas
def _eval_is_Identity(self):
if not all(self[i, i] == 1 for i in range(self.rows)):
return False
return len(self._smat) == self.rows
def _eval_is_symmetric(self, simpfunc):
diff = (self - self.T).applyfunc(simpfunc)
return len(diff.values()) == 0
def _eval_matrix_mul(self, other):
"""Fast multiplication exploiting the sparsity of the matrix."""
if not isinstance(other, SparseMatrix):
return self*self._new(other)
# if we made it here, we're both sparse matrices
# create quick lookups for rows and cols
row_lookup = defaultdict(dict)
for (i,j), val in self._smat.items():
row_lookup[i][j] = val
col_lookup = defaultdict(dict)
for (i,j), val in other._smat.items():
col_lookup[j][i] = val
smat = {}
for row in row_lookup.keys():
for col in col_lookup.keys():
# find the common indices of non-zero entries.
# these are the only things that need to be multiplied.
indices = set(col_lookup[col].keys()) & set(row_lookup[row].keys())
if indices:
val = sum(row_lookup[row][k]*col_lookup[col][k] for k in indices)
smat[(row, col)] = val
return self._new(self.rows, other.cols, smat)
def _eval_row_insert(self, irow, other):
if not isinstance(other, SparseMatrix):
other = SparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if row >= irow:
row += other.rows
new_smat[(row, col)] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[(row + irow, col)] = val
return self._new(self.rows + other.rows, self.cols, new_smat)
def _eval_scalar_mul(self, other):
return self.applyfunc(lambda x: x*other)
def _eval_scalar_rmul(self, other):
return self.applyfunc(lambda x: other*x)
def _eval_transpose(self):
"""Returns the transposed SparseMatrix of this SparseMatrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.T
Matrix([
[1, 3],
[2, 4]])
"""
smat = {(j,i): val for (i,j),val in self._smat.items()}
return self._new(self.cols, self.rows, smat)
def _eval_values(self):
return [v for k,v in self._smat.items() if not v.is_zero]
@classmethod
def _eval_zeros(cls, rows, cols):
return cls._new(rows, cols, {})
def _LDL_solve(self, rhs):
# for speed reasons, this is not uncommented, but if you are
# having difficulties, try uncommenting to make sure that the
# input matrix is symmetric
#assert self.is_symmetric()
L, D = self._LDL_sparse()
Z = L._lower_triangular_solve(rhs)
Y = D._diagonal_solve(Z)
return L.T._upper_triangular_solve(Y)
def _LDL_sparse(self):
"""Algorithm for numeric LDL factization, exploiting sparse structure.
"""
Lrowstruc = self.row_structure_symbolic_cholesky()
L = self.eye(self.rows)
D = self.zeros(self.rows, self.cols)
for i in range(len(Lrowstruc)):
for j in Lrowstruc[i]:
if i != j:
L[i, j] = self[i, j]
summ = 0
for p1 in Lrowstruc[i]:
if p1 < j:
for p2 in Lrowstruc[j]:
if p2 < j:
if p1 == p2:
summ += L[i, p1]*L[j, p1]*D[p1, p1]
else:
break
else:
break
L[i, j] -= summ
L[i, j] /= D[j, j]
elif i == j:
D[i, i] = self[i, i]
summ = 0
for k in Lrowstruc[i]:
if k < i:
summ += L[i, k]**2*D[k, k]
else:
break
D[i, i] -= summ
return L, D
def _lower_triangular_solve(self, rhs):
"""Fast algorithm for solving a lower-triangular system,
exploiting the sparsity of the given matrix.
"""
rows = [[] for i in range(self.rows)]
for i, j, v in self.row_list():
if i > j:
rows[i].append((j, v))
X = rhs.copy()
for i in range(self.rows):
for j, v in rows[i]:
X[i, 0] -= v*X[j, 0]
X[i, 0] /= self[i, i]
return self._new(X)
@property
def _mat(self):
"""Return a list of matrix elements. Some routines
in DenseMatrix use `_mat` directly to speed up operations."""
return list(self)
def _upper_triangular_solve(self, rhs):
"""Fast algorithm for solving an upper-triangular system,
exploiting the sparsity of the given matrix.
"""
rows = [[] for i in range(self.rows)]
for i, j, v in self.row_list():
if i < j:
rows[i].append((j, v))
X = rhs.copy()
for i in range(self.rows - 1, -1, -1):
rows[i].reverse()
for j, v in rows[i]:
X[i, 0] -= v*X[j, 0]
X[i, 0] /= self[i, i]
return self._new(X)
[docs] def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
out = self.copy()
for k, v in self._smat.items():
fv = f(v)
if fv:
out._smat[k] = fv
else:
out._smat.pop(k, None)
return out
[docs] def as_immutable(self):
"""Returns an Immutable version of this Matrix."""
from .immutable import ImmutableSparseMatrix
return ImmutableSparseMatrix(self)
[docs] def as_mutable(self):
"""Returns a mutable version of this matrix.
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return MutableSparseMatrix(self)
[docs] def cholesky(self):
"""
Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A
A must be a square, symmetric, positive-definite
and non-singular matrix
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T == A
True
"""
from sympy.core.numbers import nan, oo
if not self.is_symmetric():
raise ValueError('Cholesky decomposition applies only to '
'symmetric matrices.')
M = self.as_mutable()._cholesky_sparse()
if M.has(nan) or M.has(oo):
raise ValueError('Cholesky decomposition applies only to '
'positive-definite matrices')
return self._new(M)
[docs] def col_list(self):
"""Returns a column-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a=SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.CL
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See Also
========
col_op
row_list
"""
return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(reversed(k)))]
def copy(self):
return self._new(self.rows, self.cols, self._smat)
[docs] def LDLdecomposition(self):
"""
Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
symmetric, positive-definite and non-singular.
This method eliminates the use of square root and ensures that all
the diagonal entries of L are 1.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T == A
True
"""
from sympy.core.numbers import nan, oo
if not self.is_symmetric():
raise ValueError('LDL decomposition applies only to '
'symmetric matrices.')
L, D = self.as_mutable()._LDL_sparse()
if L.has(nan) or L.has(oo) or D.has(nan) or D.has(oo):
raise ValueError('LDL decomposition applies only to '
'positive-definite matrices')
return self._new(L), self._new(D)
[docs] def liupc(self):
"""Liu's algorithm, for pre-determination of the Elimination Tree of
the given matrix, used in row-based symbolic Cholesky factorization.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.liupc()
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
==========
Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
# Algorithm 2.4, p 17 of reference
# get the indices of the elements that are non-zero on or below diag
R = [[] for r in range(self.rows)]
for r, c, _ in self.row_list():
if c <= r:
R[r].append(c)
inf = len(R) # nothing will be this large
parent = [inf]*self.rows
virtual = [inf]*self.rows
for r in range(self.rows):
for c in R[r][:-1]:
while virtual[c] < r:
t = virtual[c]
virtual[c] = r
c = t
if virtual[c] == inf:
parent[c] = virtual[c] = r
return R, parent
[docs] def nnz(self):
"""Returns the number of non-zero elements in Matrix."""
return len(self._smat)
[docs] def row_list(self):
"""Returns a row-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.RL
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See Also
========
row_op
col_list
"""
return [tuple(k + (self[k],)) for k in
sorted(list(self._smat.keys()), key=lambda k: list(k))]
[docs] def row_structure_symbolic_cholesky(self):
"""Symbolic cholesky factorization, for pre-determination of the
non-zero structure of the Cholesky factororization.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.row_structure_symbolic_cholesky()
[[0], [], [0], [1, 2]]
References
==========
Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
R, parent = self.liupc()
inf = len(R) # this acts as infinity
Lrow = copy.deepcopy(R)
for k in range(self.rows):
for j in R[k]:
while j != inf and j != k:
Lrow[k].append(j)
j = parent[j]
Lrow[k] = list(sorted(set(Lrow[k])))
return Lrow
[docs] def scalar_multiply(self, scalar):
"Scalar element-wise multiplication"
M = self.zeros(*self.shape)
if scalar:
for i in self._smat:
v = scalar*self._smat[i]
if v:
M._smat[i] = v
else:
M._smat.pop(i, None)
return M
[docs] def solve_least_squares(self, rhs, method='LDL'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy.matrices import SparseMatrix, Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = SparseMatrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
t = self.T
return (t*self).inv(method=method)*t*rhs
[docs] def solve(self, rhs, method='LDL'):
"""Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
"""
if not self.is_square:
if self.rows < self.cols:
raise ValueError('Under-determined system.')
elif self.rows > self.cols:
raise ValueError('For over-determined system, M, having '
'more rows than columns, try M.solve_least_squares(rhs).')
else:
return self.inv(method=method)*rhs
RL = property(row_list, None, None, "Alternate faster representation")
CL = property(col_list, None, None, "Alternate faster representation")
[docs]class MutableSparseMatrix(SparseMatrix, MatrixBase):
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args)
def __setitem__(self, key, value):
"""Assign value to position designated by key.
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> M = SparseMatrix(2, 2, {})
>>> M[1] = 1; M
Matrix([
[0, 1],
[0, 0]])
>>> M[1, 1] = 2; M
Matrix([
[0, 1],
[0, 2]])
>>> M = SparseMatrix(2, 2, {})
>>> M[:, 1] = [1, 1]; M
Matrix([
[0, 1],
[0, 1]])
>>> M = SparseMatrix(2, 2, {})
>>> M[1, :] = [[1, 1]]; M
Matrix([
[0, 0],
[1, 1]])
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = SparseMatrix(4, 4, {})
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
if value:
self._smat[(i, j)] = value
elif (i, j) in self._smat:
del self._smat[(i, j)]
def as_mutable(self):
return self.copy()
__hash__ = None
[docs] def col_del(self, k):
"""Delete the given column of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix([[0, 0], [0, 1]])
>>> M
Matrix([
[0, 0],
[0, 1]])
>>> M.col_del(0)
>>> M
Matrix([
[0],
[1]])
See Also
========
row_del
"""
newD = {}
k = a2idx(k, self.cols)
for (i, j) in self._smat:
if j == k:
pass
elif j > k:
newD[i, j - 1] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.cols -= 1
[docs] def col_join(self, other):
"""Returns B augmented beneath A (row-wise joining)::
[A]
[B]
Examples
========
>>> from sympy import SparseMatrix, Matrix, ones
>>> A = SparseMatrix(ones(3))
>>> A
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
>>> B = SparseMatrix.eye(3)
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.col_join(B); C
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C == A.col_join(Matrix(B))
True
Joining along columns is the same as appending rows at the end
of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B))
True
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
A, B = self, other
if not A.cols == B.cols:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[(i + A.rows, j)] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[i + A.rows, j] = v
A.rows += B.rows
return A
[docs] def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i) for i in range(self.rows).
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[1, 0] = -1
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[ 2, 4, 0],
[-1, 0, 0],
[ 0, 0, 2]])
"""
for i in range(self.rows):
v = self._smat.get((i, j), S.Zero)
fv = f(v, i)
if fv:
self._smat[(i, j)] = fv
elif v:
self._smat.pop((i, j))
[docs] def col_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.col_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[2, 0, 1]])
"""
if i > j:
i, j = j, i
rows = self.col_list()
temp = []
for ii, jj, v in rows:
if jj == i:
self._smat.pop((ii, jj))
temp.append((ii, v))
elif jj == j:
self._smat.pop((ii, jj))
self._smat[ii, i] = v
elif jj > j:
break
for k, v in temp:
self._smat[k, j] = v
def copyin_list(self, key, value):
if not is_sequence(value):
raise TypeError("`value` must be of type list or tuple.")
self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
# include this here because it's not part of BaseMatrix
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(
"The Matrix `value` doesn't have the same dimensions "
"as the in sub-Matrix given by `key`.")
if not isinstance(value, SparseMatrix):
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
else:
if (rhi - rlo)*(chi - clo) < len(self):
for i in range(rlo, rhi):
for j in range(clo, chi):
self._smat.pop((i, j), None)
else:
for i, j, v in self.row_list():
if rlo <= i < rhi and clo <= j < chi:
self._smat.pop((i, j), None)
for k, v in value._smat.items():
i, j = k
self[i + rlo, j + clo] = value[i, j]
[docs] def fill(self, value):
"""Fill self with the given value.
Notes
=====
Unless many values are going to be deleted (i.e. set to zero)
this will create a matrix that is slower than a dense matrix in
operations.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.zeros(3); M
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> M.fill(1); M
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
"""
if not value:
self._smat = {}
else:
v = self._sympify(value)
self._smat = {(i, j): v
for i in range(self.rows) for j in range(self.cols)}
[docs] def row_del(self, k):
"""Delete the given row of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix([[0, 0], [0, 1]])
>>> M
Matrix([
[0, 0],
[0, 1]])
>>> M.row_del(0)
>>> M
Matrix([[0, 1]])
See Also
========
col_del
"""
newD = {}
k = a2idx(k, self.rows)
for (i, j) in self._smat:
if i == k:
pass
elif i > k:
newD[i - 1, j] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.rows -= 1
[docs] def row_join(self, other):
"""Returns B appended after A (column-wise augmenting)::
[A B]
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0)))
>>> A
Matrix([
[1, 0, 1],
[0, 1, 0],
[1, 1, 0]])
>>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.row_join(B); C
Matrix([
[1, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 1]])
>>> C == A.row_join(Matrix(B))
True
Joining at row ends is the same as appending columns at the end
of the matrix:
>>> C == A.col_insert(A.cols, B)
True
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
A, B = self, other
if not A.rows == B.rows:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[(i, j + A.cols)] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[(i, j + A.cols)] = v
A.cols += B.cols
return A
[docs] def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
zip_row_op
col_op
"""
for j in range(self.cols):
v = self._smat.get((i, j), S.Zero)
fv = f(v, j)
if fv:
self._smat[(i, j)] = fv
elif v:
self._smat.pop((i, j))
[docs] def row_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.row_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[0, 2, 1]])
"""
if i > j:
i, j = j, i
rows = self.row_list()
temp = []
for ii, jj, v in rows:
if ii == i:
self._smat.pop((ii, jj))
temp.append((jj, v))
elif ii == j:
self._smat.pop((ii, jj))
self._smat[i, jj] = v
elif ii > j:
break
for k, v in temp:
self._smat[j, k] = v
[docs] def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
row_op
col_op
"""
self.row_op(i, lambda v, j: f(v, self[k, j]))