Sparse Matrices¶
SparseMatrix Class Reference¶
-
class
sympy.matrices.sparse.
SparseMatrix
[source]¶ A sparse matrix (a matrix with a large number of zero elements).
Examples
>>> from sympy.matrices import SparseMatrix >>> SparseMatrix(2, 2, range(4)) Matrix([ [0, 1], [2, 3]]) >>> SparseMatrix(2, 2, {(1, 1): 2}) Matrix([ [0, 0], [0, 2]])
See also
sympy.matrices.dense.Matrix
-
CL
¶ Alternate faster representation
-
LDLdecomposition
()[source]¶ Returns the LDL Decomposition (matrices
L
andD
) of matrixA
, such thatL * D * L.T == A
.A
must be a square, symmetric, positive-definite and non-singular.This method eliminates the use of square root and ensures that all the diagonal entries of L are 1.
Examples
>>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True
-
RL
¶ Alternate faster representation
-
applyfunc
(f)[source]¶ Apply a function to each element of the matrix.
Examples
>>> from sympy.matrices import SparseMatrix >>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]])
-
as_mutable
()[source]¶ Returns a mutable version of this matrix.
Examples
>>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]])
-
cholesky
()[source]¶ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A
A must be a square, symmetric, positive-definite and non-singular matrix
Examples
>>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True
-
col_list
()[source]¶ Returns a column-sorted list of non-zero elements of the matrix.
Examples
>>> from sympy.matrices import SparseMatrix >>> a=SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.CL [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See also
col_op
,row_list
-
liupc
()[source]¶ Liu’s algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
-
row_list
()[source]¶ Returns a row-sorted list of non-zero elements of the matrix.
Examples
>>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.RL [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See also
row_op
,col_list
-
row_structure_symbolic_cholesky
()[source]¶ Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]]
References
Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
-
solve
(rhs, method='LDL')[source]¶ Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
-
solve_least_squares
(rhs, method='LDL')[source]¶ Return the least-square fit to the data.
By default the cholesky_solve routine is used (method=’CH’); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method.
Examples
>>> from sympy.matrices import SparseMatrix, Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = SparseMatrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]])
If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]])
But let’s add 1 to the middle value and then solve for the least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]])
The error is given by S*xy - r:
>>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5
-
-
class
sympy.matrices.sparse.
MutableSparseMatrix
[source]¶ -
col_del
(k)[source]¶ Delete the given column of the matrix.
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.col_del(0) >>> M Matrix([ [0], [1]])
See also
-
col_join
(other)[source]¶ Returns B augmented beneath A (row-wise joining):
[A] [B]
Examples
>>> from sympy import SparseMatrix, Matrix, ones >>> A = SparseMatrix(ones(3)) >>> A Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> B = SparseMatrix.eye(3) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.col_join(B); C Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C == A.col_join(Matrix(B)) True
Joining along columns is the same as appending rows at the end of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B)) True
-
col_op
(j, f)[source]¶ In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i) for i in range(self.rows).
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[1, 0] = -1 >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2]])
-
col_swap
(i, j)[source]¶ Swap, in place, columns i and j.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.col_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [2, 0, 1]])
-
fill
(value)[source]¶ Fill self with the given value.
Notes
Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations.
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.zeros(3); M Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> M.fill(1); M Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]])
-
row_del
(k)[source]¶ Delete the given row of the matrix.
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.row_del(0) >>> M Matrix([[0, 1]])
See also
-
row_join
(other)[source]¶ Returns B appended after A (column-wise augmenting):
[A B]
Examples
>>> from sympy import SparseMatrix, Matrix >>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) >>> A Matrix([ [1, 0, 1], [0, 1, 0], [1, 1, 0]]) >>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.row_join(B); C Matrix([ [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) >>> C == A.row_join(Matrix(B)) True
Joining at row ends is the same as appending columns at the end of the matrix:
>>> C == A.col_insert(A.cols, B) True
-
row_op
(i, f)[source]¶ In-place operation on row
i
using two-arg functor whose args are interpreted as(self[i, j], j)
.Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]])
See also
row
,zip_row_op
,col_op
-
row_swap
(i, j)[source]¶ Swap, in place, columns i and j.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.row_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [0, 2, 1]])
-
zip_row_op
(i, k, f)[source]¶ In-place operation on row
i
using two-arg functor whose args are interpreted as(self[i, j], self[k, j])
.Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]])
-
ImmutableSparseMatrix Class Reference¶
-
class
sympy.matrices.immutable.
ImmutableSparseMatrix
[source]¶ Create an immutable version of a sparse matrix.
Examples
>>> from sympy import eye >>> from sympy.matrices.immutable import ImmutableSparseMatrix >>> ImmutableSparseMatrix(1, 1, {}) Matrix([[0]]) >>> ImmutableSparseMatrix(eye(3)) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> _[0, 0] = 42 Traceback (most recent call last): ... TypeError: Cannot set values of ImmutableSparseMatrix >>> _.shape (3, 3)
-
is_diagonalizable
(reals_only=False, **kwargs)[source]¶ Returns true if a matrix is diagonalizable.
- Parameters
reals_only : bool. If reals_only=True, determine whether the matrix can be
diagonalized without complex numbers. (Default: False)
Kwargs
- clear_cachebool. If True, clear the result of any computations when finished.
(Default: True)
Examples
>>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> m.is_diagonalizable() True >>> m = Matrix(2, 2, [0, 1, 0, 0]) >>> m Matrix([ [0, 1], [0, 0]]) >>> m.is_diagonalizable() False >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_diagonalizable() True >>> m.is_diagonalizable(reals_only=True) False
See also
is_diagonal
,diagonalize
-