View source on GitHub
|
Creates a constant tensor from a tensor-like object.
tf.constant(
value, dtype=None, shape=None, name='Const'
)
Note: All eager tf.Tensor values are immutable (in contrast to
tf.Variable). There is nothing especially constant about the value
returned from tf.constant. This function it is not fundamentally different
from tf.convert_to_tensor. The name tf.constant comes from the symbolic
APIs (like tf.data or keras functional models) where the value is embeded
in a Const node in the tf.Graph. tf.constant is useful for asserting
that the value can be embedded that way.
If the argument dtype is not specified, then the type is inferred from
the type of value.
>>> # Constant 1-D Tensor from a python list.
>>> tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
>>> # Or a numpy array
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[1, 2, 3],
[4, 5, 6]])>
If dtype is specified the resulting tensor values are cast to the requested
dtype.
>>> tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
numpy=array([1., 2., 3., 4., 5., 6.])>
If shape is set, the value is reshaped to match. Scalars are expanded to
fill the shape:
>>> tf.constant(0, shape=(2, 3))
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
[0, 0, 0]], dtype=int32)>
>>> tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6]], dtype=int32)>
tf.constant has no effect if an eager Tensor is passed as the value, it
even transmits gradients:
>>> v = tf.Variable([0.0])
>>> with tf.GradientTape() as g:
... loss = tf.constant(v + v)
>>> g.gradient(loss, v).numpy()
array([2.], dtype=float32)
But, since tf.constant embeds the value in the tf.Graph this fails for
symbolic tensors:
>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.constant(i)
Traceback (most recent call last):
...
ValueError: ...
tf.convert_to_tensor is similar but:
shape argument.>>> i = tf.keras.layers.Input(shape=[None, None])
>>> t = tf.convert_to_tensor(i)
tf.fill: differs in a few ways:
tf.constant supports arbitrary constants, not just uniform scalar
Tensors like tf.fill.tf.fill creates an Op in the graph that is expanded at runtime, so it
can efficiently represent large tensors.tf.fill does not embed the value, it can produce dynamically
sized outputs.value: A constant value (or list) of output type dtype.dtype: The type of the elements of the resulting tensor.shape: Optional dimensions of resulting tensor.name: Optional name for the tensor.A Constant Tensor.
TypeError: if shape is incorrectly specified or unsupported.ValueError: if called on a symbolic tensor.