View source on GitHub
|
An in-process TensorFlow server, for use in distributed training.
tf.distribute.Server(
server_or_cluster_def, job_name=None, task_index=None, protocol=None,
config=None, start=True
)
A tf.distribute.Server instance encapsulates a set of devices and a
tf.compat.v1.Session target that
can participate in distributed training. A server belongs to a
cluster (specified by a tf.train.ClusterSpec), and
corresponds to a particular task in a named job. The server can
communicate with any other server in the same cluster.
server_or_cluster_def: A tf.train.ServerDef or tf.train.ClusterDef
protocol buffer, or a tf.train.ClusterSpec object, describing the
server to be created and/or the cluster of which it is a member.job_name: (Optional.) Specifies the name of the job of which the server is
a member. Defaults to the value in server_or_cluster_def, if
specified.task_index: (Optional.) Specifies the task index of the server in its job.
Defaults to the value in server_or_cluster_def, if specified.
Otherwise defaults to 0 if the server's job has only one task.protocol: (Optional.) Specifies the protocol to be used by the server.
Acceptable values include "grpc", "grpc+verbs". Defaults to the value
in server_or_cluster_def, if specified. Otherwise defaults to
"grpc".config: (Options.) A tf.compat.v1.ConfigProto that specifies default
configuration options for all sessions that run on this server.start: (Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True.server_def: Returns the tf.train.ServerDef for this server.
target: Returns the target for a tf.compat.v1.Session to connect to this server.
To create a
tf.compat.v1.Session that
connects to this server, use the following snippet:
server = tf.distribute.Server(...)
with tf.compat.v1.Session(server.target):
# ...
tf.errors.OpError: Or one of its subclasses if an error occurs while
creating the TensorFlow server.create_local_server@staticmethod
create_local_server(
config=None, start=True
)
Creates a new single-process cluster running on the local host.
This method is a convenience wrapper for creating a
tf.distribute.Server with a tf.train.ServerDef that specifies a
single-process cluster containing a single task in a job called
"local".
config: (Options.) A tf.compat.v1.ConfigProto that specifies default
configuration options for all sessions that run on this server.start: (Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True.A local tf.distribute.Server.
joinjoin()
Blocks until the server has shut down.
This method currently blocks forever.
tf.errors.OpError: Or one of its subclasses if an error occurs while
joining the TensorFlow server.startstart()
Starts this server.
tf.errors.OpError: Or one of its subclasses if an error occurs while
starting the TensorFlow server.