View source on GitHub |
Depthwise separable 2D convolution.
Inherits From: Conv2D
tf.keras.layers.DepthwiseConv2D(
kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,
data_format=None, activation=None, use_bias=True,
depthwise_initializer='glorot_uniform', bias_initializer='zeros',
depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
depthwise_constraint=None, bias_constraint=None, **kwargs
)
Depthwise Separable convolutions consists in performing
just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
The depth_multiplier
argument controls how many
output channels are generated per input channel in the depthwise step.
kernel_size
: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.strides
: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate
value != 1.padding
: one of 'valid'
or 'same'
(case-insensitive).depth_multiplier
: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier
.data_format
: A string,
one of channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch, height, width, channels)
while channels_first
corresponds to inputs with shape
(batch, channels, height, width)
.
It defaults to the image_data_format
value found in your
Keras config file at ~/.keras/keras.json
.
If you never set it, then it will be 'channels_last'.activation
: Activation function to use.
If you don't specify anything, no activation is applied
(ie. 'linear' activation: a(x) = x
).use_bias
: Boolean, whether the layer uses a bias vector.depthwise_initializer
: Initializer for the depthwise kernel matrix.bias_initializer
: Initializer for the bias vector.depthwise_regularizer
: Regularizer function applied to
the depthwise kernel matrix.bias_regularizer
: Regularizer function applied to the bias vector.activity_regularizer
: Regularizer function applied to
the output of the layer (its 'activation').depthwise_constraint
: Constraint function applied to
the depthwise kernel matrix.bias_constraint
: Constraint function applied to the bias vector.4D tensor with shape:
[batch, channels, rows, cols]
if data_format='channels_first'
or 4D tensor with shape:
[batch, rows, cols, channels]
if data_format='channels_last'.
4D tensor with shape:
[batch, filters, new_rows, new_cols]
if data_format='channels_first'
or 4D tensor with shape:
[batch, new_rows, new_cols, filters]
if data_format='channels_last'.
rows
and cols
values might have changed due to padding.