View source on GitHub
|
Depthwise separable 2D convolution.
Inherits From: Conv2D
tf.keras.layers.DepthwiseConv2D(
kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,
data_format=None, activation=None, use_bias=True,
depthwise_initializer='glorot_uniform', bias_initializer='zeros',
depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
depthwise_constraint=None, bias_constraint=None, **kwargs
)
Depthwise Separable convolutions consists in performing
just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
The depth_multiplier argument controls how many
output channels are generated per input channel in the depthwise step.
kernel_size: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate value != 1.padding: one of 'valid' or 'same' (case-insensitive).depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier.data_format: A string,
one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, height, width).
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json.
If you never set it, then it will be 'channels_last'.activation: Activation function to use.
If you don't specify anything, no activation is applied
(ie. 'linear' activation: a(x) = x).use_bias: Boolean, whether the layer uses a bias vector.depthwise_initializer: Initializer for the depthwise kernel matrix.bias_initializer: Initializer for the bias vector.depthwise_regularizer: Regularizer function applied to
the depthwise kernel matrix.bias_regularizer: Regularizer function applied to the bias vector.activity_regularizer: Regularizer function applied to
the output of the layer (its 'activation').depthwise_constraint: Constraint function applied to
the depthwise kernel matrix.bias_constraint: Constraint function applied to the bias vector.4D tensor with shape:
[batch, channels, rows, cols] if data_format='channels_first'
or 4D tensor with shape:
[batch, rows, cols, channels] if data_format='channels_last'.
4D tensor with shape:
[batch, filters, new_rows, new_cols] if data_format='channels_first'
or 4D tensor with shape:
[batch, new_rows, new_cols, filters] if data_format='channels_last'.
rows and cols values might have changed due to padding.