View source on GitHub |
Stacks a list of rank-R
tensors into one rank-(R+1)
RaggedTensor
.
tf.ragged.stack(
values, axis=0, name=None
)
Given a list of tensors or ragged tensors with the same rank R
(R >= axis
), returns a rank-R+1
RaggedTensor
result
such that
result[i0...iaxis]
is [value[i0...iaxis] for value in values]
.
>>> # Stacking two ragged tensors.
>>> t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
>>> t2 = tf.ragged.constant([[6], [7, 8, 9]])
>>> tf.ragged.stack([t1, t2], axis=0)
<tf.RaggedTensor [[[1, 2], [3, 4, 5]], [[6], [7, 8, 9]]]>
>>> tf.ragged.stack([t1, t2], axis=1)
<tf.RaggedTensor [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]]>
>>> # Stacking two dense tensors with different sizes.
>>> t3 = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> t4 = tf.constant([[5], [6], [7]])
>>> tf.ragged.stack([t3, t4], axis=0)
<tf.RaggedTensor [[[1, 2, 3], [4, 5, 6]], [[5], [6], [7]]]>
values
: A list of tf.Tensor
or tf.RaggedTensor
. May not be empty. All
values
must have the same rank and the same dtype; but unlike
tf.stack
, they can have arbitrary dimension sizes.axis
: A python integer, indicating the dimension along which to stack.
(Note: Unlike tf.stack
, the axis
parameter must be statically known.)
Negative values are supported only if the rank of at least one
values
value is statically known.name
: A name prefix for the returned tensor (optional).A RaggedTensor
with rank R+1
.
result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values]))
.
ValueError
: If values
is empty, if axis
is out of bounds or if
the input tensors have different ranks.