View source on GitHub
|
Outputs random values from a uniform distribution.
tf.random.uniform(
shape, minval=0, maxval=None, dtype=tf.dtypes.float32, seed=None, name=None
)
The generated values follow a uniform distribution in the range
[minval, maxval). The lower bound minval is included in the range, while
the upper bound maxval is excluded.
For floats, the default range is [0, 1). For ints, at least maxval must
be specified explicitly.
In the integer case, the random integers are slightly biased unless
maxval - minval is an exact power of two. The bias is small for values of
maxval - minval significantly smaller than the range of the output (either
2**32 or 2**64).
>>> tf.random.uniform(shape=[2])
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
>>> tf.random.uniform(shape=[], minval=-1., maxval=0.)
<tf.Tensor: shape=(), dtype=float32, numpy=-...>
>>> tf.random.uniform(shape=[], minval=5, maxval=10, dtype=tf.int64)
<tf.Tensor: shape=(), dtype=int64, numpy=...>
The seed argument produces a deterministic sequence of tensors across
multiple calls. To repeat that sequence, use tf.random.set_seed:
>>> tf.random.set_seed(5)
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
>>> tf.random.set_seed(5)
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> tf.random.uniform(shape=[], maxval=3, dtype=tf.int32, seed=10)
<tf.Tensor: shape=(), dtype=int32, numpy=0>
Without tf.random.set_seed but with a seed argument is specified, small
changes to function graphs or previously executed operations will change the
returned value. See tf.random.set_seed for details.
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.minval: A Tensor or Python value of type dtype, broadcastable with
maxval. The lower bound on the range of random values to generate
(inclusive). Defaults to 0.maxval: A Tensor or Python value of type dtype, broadcastable with
minval. The upper bound on the range of random values to generate
(exclusive). Defaults to 1 if dtype is floating point.dtype: The type of the output: float16, float32, float64, int32,
or int64.seed: A Python integer. Used in combination with tf.random.set_seed to
create a reproducible sequence of tensors across multiple calls.name: A name for the operation (optional).A tensor of the specified shape filled with random uniform values.
ValueError: If dtype is integral and maxval is not specified.