View source on GitHub |
Sets the global random seed.
tf.random.set_seed(
seed
)
Operations that rely on a random seed actually derive it from two seeds: the global and operation-level seeds. This sets the global seed.
Its interactions with operation-level seeds is as follows:
To illustrate the user-visible effects, consider these examples:
If neither the global seed nor the operation seed is set, we get different results for every call to the random op and every re-run of the program:
print(tf.random.uniform([1])) # generates 'A1'
print(tf.random.uniform([1])) # generates 'A2'
(now close the program and run it again)
print(tf.random.uniform([1])) # generates 'A3'
print(tf.random.uniform([1])) # generates 'A4'
If the global seed is set but the operation seed is not set, we get different results for every call to the random op, but the same sequence for every re-run of the program:
tf.random.set_seed(1234)
print(tf.random.uniform([1])) # generates 'A1'
print(tf.random.uniform([1])) # generates 'A2'
(now close the program and run it again)
tf.random.set_seed(1234)
print(tf.random.uniform([1])) # generates 'A1'
print(tf.random.uniform([1])) # generates 'A2'
The reason we get 'A2' instead 'A1' on the second call of tf.random.uniform
above is because the secand call uses a different operation seed.
If the operation seed is set, we get different results for every call to the random op, but the same sequence for every re-run of the program:
print(tf.random.uniform([1], seed=1)) # generates 'A1'
print(tf.random.uniform([1], seed=1)) # generates 'A2'
(now close the program and run it again)
print(tf.random.uniform([1], seed=1)) # generates 'A1'
print(tf.random.uniform([1], seed=1)) # generates 'A2'
The reason we get 'A2' instead 'A1' on the second call of tf.random.uniform
above is because the same tf.random.uniform
kernel (i.e. internel
representation) is used by TensorFlow for all calls of it with the same
arguments, and the kernel maintains an internal counter which is incremented
every time it is executed, generating different results.
Calling tf.random.set_seed
will reset any such counters:
tf.random.set_seed(1234)
print(tf.random.uniform([1], seed=1)) # generates 'A1'
print(tf.random.uniform([1], seed=1)) # generates 'A2'
tf.random.set_seed(1234)
print(tf.random.uniform([1], seed=1)) # generates 'A1'
print(tf.random.uniform([1], seed=1)) # generates 'A2'
When multiple identical random ops are wrapped in a tf.function
, their
behaviors change because the ops no long share the same counter. For example:
@tf.function
def foo():
a = tf.random.uniform([1], seed=1)
b = tf.random.uniform([1], seed=1)
return a, b
print(foo()) # prints '(A1, A1)'
print(foo()) # prints '(A2, A2)'
@tf.function
def bar():
a = tf.random.uniform([1])
b = tf.random.uniform([1])
return a, b
print(bar()) # prints '(A1, A2)'
print(bar()) # prints '(A3, A4)'
The second call of foo
returns '(A2, A2)' instead of '(A1, A1)' because
tf.random.uniform
maintains an internal counter. If you want foo
to return
'(A1, A1)' every time, use the stateless random ops such as
tf.random.stateless_uniform
. Also see tf.random.experimental.Generator
for
a new set of stateful random ops that use external variables to manage their
states.
seed
: integer.