tf.signal.linear_to_mel_weight_matrix

View source on GitHub

Returns a matrix to warp linear scale spectrograms to the mel scale.

tf.signal.linear_to_mel_weight_matrix(
    num_mel_bins=20, num_spectrogram_bins=129, sample_rate=8000,
    lower_edge_hertz=125.0, upper_edge_hertz=3800.0, dtype=tf.dtypes.float32,
    name=None
)

Returns a weight matrix that can be used to re-weight a Tensor containing num_spectrogram_bins linearly sampled frequency information from [0, sample_rate / 2] into num_mel_bins frequency information from [lower_edge_hertz, upper_edge_hertz] on the mel scale.

For example, the returned matrix A can be used to right-multiply a spectrogram S of shape [frames, num_spectrogram_bins] of linear scale spectrum values (e.g. STFT magnitudes) to generate a "mel spectrogram" M of shape [frames, num_mel_bins].

# `S` has shape [frames, num_spectrogram_bins]
# `M` has shape [frames, num_mel_bins]
M = tf.matmul(S, A)

The matrix can be used with tf.tensordot to convert an arbitrary rank Tensor of linear-scale spectral bins into the mel scale.

# S has shape [..., num_spectrogram_bins].
# M has shape [..., num_mel_bins].
M = tf.tensordot(S, A, 1)
# tf.tensordot does not support shape inference for this case yet.
M.set_shape(S.shape[:-1].concatenate(A.shape[-1:]))

Args:

Returns:

A Tensor of shape [num_spectrogram_bins, num_mel_bins].

Raises: