Source code for cvxpy.atoms.pnorm

"""
Copyright 2013 Steven Diamond

This file is part of CVXPY.

CVXPY is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

CVXPY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with CVXPY.  If not, see <http://www.gnu.org/licenses/>.
"""

from cvxpy.atoms.atom import Atom
from cvxpy.atoms.axis_atom import AxisAtom
import cvxpy.lin_ops.lin_utils as lu
import numpy as np
import scipy.sparse as sp
from cvxpy.utilities.power_tools import pow_high, pow_mid, pow_neg, gm_constrs
from cvxpy.constraints.second_order import SOC
from fractions import Fraction


[docs]class pnorm(AxisAtom): r"""The vector p-norm. If given a matrix variable, ``pnorm`` will treat it as a vector, and compute the p-norm of the concatenated columns. For :math:`p \geq 1`, the p-norm is given by .. math:: \|x\|_p = \left(\sum_i |x_i|^p \right)^{1/p}, with domain :math:`x \in \mathbf{R}^n`. For :math:`p < 1,\ p \neq 0`, the p-norm is given by .. math:: \|x\|_p = \left(\sum_i x_i^p \right)^{1/p}, with domain :math:`x \in \mathbf{R}^n_+`. - Note that the "p-norm" is actually a **norm** only when :math:`p \geq 1` or :math:`p = +\infty`. For these cases, it is convex. - The expression is not defined when :math:`p = 0`. - Otherwise, when :math:`p < 1`, the expression is concave, but it is not a true norm. .. note:: Generally, ``p`` cannot be represented exactly, so a rational, i.e., fractional, **approximation** must be made. Internally, ``pnorm`` computes a rational approximation to the reciprocal :math:`1/p` with a denominator up to ``max_denom``. The resulting approximation can be found through the attribute ``pnorm.p``. The approximation error is given by the attribute ``pnorm.approx_error``. Increasing ``max_denom`` can give better approximations. When ``p`` is an ``int`` or ``Fraction`` object, the approximation is usually **exact**. Parameters ---------- x : cvxpy.Variable The value to take the norm of. p : int, float, Fraction, or string If ``p`` is an ``int``, ``float``, or ``Fraction`` then we must have :math:`p \geq 1`. The only other valid inputs are ``numpy.inf``, ``float('inf')``, ``float('Inf')``, or the strings ``"inf"`` or ``"inf"``, all of which are equivalent and give the infinity norm. max_denom : int The maximum denominator considered in forming a rational approximation for ``p``. axis : 0 or 1 The axis to apply the norm to. Returns ------- Expression An Expression representing the norm. """ def __init__(self, x, p=2, axis=None, max_denom=1024): p_old = p if p in ('inf', 'Inf', np.inf): self.p = np.inf elif p < 0: self.p, _ = pow_neg(p, max_denom) elif 0 < p < 1: self.p, _ = pow_mid(p, max_denom) elif p > 1: self.p, _ = pow_high(p, max_denom) elif p == 1: self.p = 1 else: raise ValueError('Invalid p: {}'.format(p)) super(pnorm, self).__init__(x, axis=axis) if self.p == np.inf: self.approx_error = 0 else: self.approx_error = float(abs(self.p - p_old)) @Atom.numpy_numeric def numeric(self, values): """Returns the p-norm of x. """ if self.axis is None: values = np.array(values[0]).flatten() else: values = np.array(values[0]) if self.p < 1 and np.any(values < 0): return -np.inf if self.p < 0 and np.any(values == 0): return 0.0 retval = np.linalg.norm(values, float(self.p), axis=self.axis) # NOTE: workaround for NumPy <=1.9 and no keepdims for norm() if self.axis is not None: if self.axis == 0: retval = np.reshape(retval, (1, self.args[0].shape[1])) else: # self.axis == 1: retval = np.reshape(retval, (self.args[0].shape[0], 1)) return retval def validate_arguments(self): super(pnorm, self).validate_arguments() if self.axis is not None and self.p != 2: raise ValueError( "The axis parameter is only supported for p=2.") def sign_from_args(self): """Returns sign (is positive, is negative) of the expression. """ # Always positive. return (True, False) def is_atom_convex(self): """Is the atom convex? """ return self.p >= 1 def is_atom_concave(self): """Is the atom concave? """ return self.p < 1 def is_incr(self, idx): """Is the composition non-decreasing in argument idx? """ return self.p < 1 or (self.p >= 1 and self.args[0].is_positive()) def is_decr(self, idx): """Is the composition non-increasing in argument idx? """ return self.p >= 1 and self.args[0].is_negative() def is_pwl(self): """Is the atom piecewise linear? """ return (self.p == 1 or self.p == np.inf) and self.args[0].is_pwl() def get_data(self): return [self.p, self.axis] def name(self): return "%s(%s, %s)" % (self.__class__.__name__, self.args[0].name(), self.p) def _domain(self): """Returns constraints describing the domain of the node. """ if self.p < 1 and self.p != 0: return [self.args[0] >= 0] else: return [] def _grad(self, values): """Gives the (sub/super)gradient of the atom w.r.t. each argument. Matrix expressions are vectorized, so the gradient is a matrix. Args: values: A list of numeric values for the arguments. Returns: A list of SciPy CSC sparse matrices or None. """ return self._axis_grad(values) def _column_grad(self, value): """Gives the (sub/super)gradient of the atom w.r.t. a column argument. Matrix expressions are vectorized, so the gradient is a matrix. Args: value: A numeric value for a column. Returns: A NumPy ndarray matrix or None. """ rows = self.args[0].shape[0]*self.args[0].shape[1] value = np.matrix(value) # Outside domain. if self.p < 1 and np.any(value <= 0): return None D_null = sp.csc_matrix((rows, 1), dtype='float64') if self.p == 1: D_null += (value > 0) D_null -= (value < 0) return sp.csc_matrix(D_null.A.ravel(order='F')).T denominator = np.linalg.norm(value, float(self.p)) denominator = np.power(denominator, self.p - 1) # Subgrad is 0 when denom is 0 (or undefined). if denominator == 0: if self.p >= 1: return D_null else: return None else: nominator = np.power(value, self.p - 1) frac = np.divide(nominator, denominator) return np.reshape(frac.A, (frac.size, 1))
[docs] @staticmethod def graph_implementation(arg_objs, shape, data=None): r"""Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. shape : tuple The shape of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) Notes ----- Implementation notes. - For general :math:`p \geq 1`, the inequality :math:`\|x\|_p \leq t` is equivalent to the following convex inequalities: .. math:: |x_i| &\leq r_i^{1/p} t^{1 - 1/p}\\ \sum_i r_i &= t. These inequalities happen to also be correct for :math:`p = +\infty`, if we interpret :math:`1/\infty` as :math:`0`. - For general :math:`0 < p < 1`, the inequality :math:`\|x\|_p \geq t` is equivalent to the following convex inequalities: .. math:: r_i &\leq x_i^{p} t^{1 - p}\\ \sum_i r_i &= t. - For general :math:`p < 0`, the inequality :math:`\|x\|_p \geq t` is equivalent to the following convex inequalities: .. math:: t &\leq x_i^{-p/(1-p)} r_i^{1/(1 - p)}\\ \sum_i r_i &= t. Although the inequalities above are correct, for a few special cases, we can represent the p-norm more efficiently and with fewer variables and inequalities. - For :math:`p = 1`, we use the representation .. math:: x_i &\leq r_i\\ -x_i &\leq r_i\\ \sum_i r_i &= t - For :math:`p = \infty`, we use the representation .. math:: x_i &\leq t\\ -x_i &\leq t Note that we don't need the :math:`r` variable or the sum inequality. - For :math:`p = 2`, we use the natural second-order cone representation .. math:: \|x\|_2 \leq t Note that we could have used the set of inequalities given above if we wanted an alternate decomposition of a large second-order cone into into several smaller inequalities. """ p = data[0] axis = data[1] x = arg_objs[0] t = lu.create_var((1, 1)) constraints = [] # first, take care of the special cases of p = 2, inf, and 1 if p == 2: if axis is None: return t, [SOC(t, x)] else: t = lu.create_var(shape) return t, [SOC(lu.reshape(t, (t.shape[0]*t.shape[1], 1)), x, axis)] if p == np.inf: t_ = lu.promote(t, x.shape) return t, [lu.create_leq(x, t_), lu.create_geq(lu.sum_expr([x, t_]))] # we need an absolute value constraint for the symmetric convex branches (p >= 1) # we alias |x| as x from this point forward to make the code pretty :) if p >= 1: absx = lu.create_var(x.shape) constraints += [lu.create_leq(x, absx), lu.create_geq(lu.sum_expr([x, absx]))] x = absx if p == 1: return lu.sum_entries(x), constraints # now, we take care of the remaining convex and concave branches # to create the rational powers, we need a new variable, r, and # the constraint sum(r) == t r = lu.create_var(x.shape) t_ = lu.promote(t, x.shape) constraints += [lu.create_eq(lu.sum_entries(r), t)] # make p a fraction so that the input weight to gm_constrs # is a nice tuple of fractions. p = Fraction(p) if p < 0: constraints += gm_constrs(t_, [x, r], (-p/(1-p), 1/(1-p))) if 0 < p < 1: constraints += gm_constrs(r, [x, t_], (p, 1-p)) if p > 1: constraints += gm_constrs(x, [r, t_], (1/p, 1-1/p)) return t, constraints
# todo: no need to run gm_constr to form the tree each time. # we only need to form the tree once