Source code for torchaudio.datasets.yesno
import os
import warnings
import torchaudio
from torch.utils.data import Dataset
from torchaudio.datasets.utils import download_url, extract_archive, walk_files
URL = "http://www.openslr.org/resources/1/waves_yesno.tar.gz"
FOLDER_IN_ARCHIVE = "waves_yesno"
def load_yesno_item(fileid, path, ext_audio):
# Read label
labels = [int(c) for c in fileid.split("_")]
# Read wav
file_audio = os.path.join(path, fileid + ext_audio)
waveform, sample_rate = torchaudio.load(file_audio)
return waveform, sample_rate, labels
[docs]class YESNO(Dataset):
"""
Create a Dataset for YesNo. Each item is a tuple of the form:
(waveform, sample_rate, labels)
"""
_ext_audio = ".wav"
def __init__(
self,
root,
url=URL,
folder_in_archive=FOLDER_IN_ARCHIVE,
download=False,
transform=None,
target_transform=None,
):
if transform is not None or target_transform is not None:
warnings.warn(
"In the next version, transforms will not be part of the dataset. "
"Please remove the option `transform=True` and "
"`target_transform=True` to suppress this warning."
)
self.transform = transform
self.target_transform = target_transform
archive = os.path.basename(url)
archive = os.path.join(root, archive)
self._path = os.path.join(root, folder_in_archive)
if download:
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
download_url(url, root)
extract_archive(archive)
if not os.path.isdir(self._path):
raise RuntimeError(
"Dataset not found. Please use `download=True` to download it."
)
walker = walk_files(
self._path, suffix=self._ext_audio, prefix=False, remove_suffix=True
)
self._walker = list(walker)
def __getitem__(self, n):
fileid = self._walker[n]
item = load_yesno_item(fileid, self._path, self._ext_audio)
# TODO Upon deprecation, uncomment line below and remove following code
# return item
waveform, sample_rate, labels = item
if self.transform is not None:
waveform = self.transform(waveform)
if self.target_transform is not None:
labels = self.target_transform(labels)
return waveform, sample_rate, labels
def __len__(self):
return len(self._walker)