Shortcuts

Source code for torchaudio.datasets.yesno

import os
import warnings

import torchaudio
from torch.utils.data import Dataset
from torchaudio.datasets.utils import download_url, extract_archive, walk_files

URL = "http://www.openslr.org/resources/1/waves_yesno.tar.gz"
FOLDER_IN_ARCHIVE = "waves_yesno"


def load_yesno_item(fileid, path, ext_audio):
    # Read label
    labels = [int(c) for c in fileid.split("_")]

    # Read wav
    file_audio = os.path.join(path, fileid + ext_audio)
    waveform, sample_rate = torchaudio.load(file_audio)

    return waveform, sample_rate, labels


[docs]class YESNO(Dataset): """ Create a Dataset for YesNo. Each item is a tuple of the form: (waveform, sample_rate, labels) """ _ext_audio = ".wav" def __init__( self, root, url=URL, folder_in_archive=FOLDER_IN_ARCHIVE, download=False, transform=None, target_transform=None, ): if transform is not None or target_transform is not None: warnings.warn( "In the next version, transforms will not be part of the dataset. " "Please remove the option `transform=True` and " "`target_transform=True` to suppress this warning." ) self.transform = transform self.target_transform = target_transform archive = os.path.basename(url) archive = os.path.join(root, archive) self._path = os.path.join(root, folder_in_archive) if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): download_url(url, root) extract_archive(archive) if not os.path.isdir(self._path): raise RuntimeError( "Dataset not found. Please use `download=True` to download it." ) walker = walk_files( self._path, suffix=self._ext_audio, prefix=False, remove_suffix=True ) self._walker = list(walker) def __getitem__(self, n): fileid = self._walker[n] item = load_yesno_item(fileid, self._path, self._ext_audio) # TODO Upon deprecation, uncomment line below and remove following code # return item waveform, sample_rate, labels = item if self.transform is not None: waveform = self.transform(waveform) if self.target_transform is not None: labels = self.target_transform(labels) return waveform, sample_rate, labels def __len__(self): return len(self._walker)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources