Shortcuts

Source code for torchaudio.kaldi_io

# To use this file, the dependency (https://github.com/vesis84/kaldi-io-for-python)
# needs to be installed. This is a light wrapper around kaldi_io that returns
# torch.Tensors.
import torch
from torchaudio.common_utils import IMPORT_KALDI_IO, IMPORT_NUMPY

if IMPORT_NUMPY:
    import numpy as np

if IMPORT_KALDI_IO:
    import kaldi_io


__all__ = [
    'read_vec_int_ark',
    'read_vec_flt_scp',
    'read_vec_flt_ark',
    'read_mat_scp',
    'read_mat_ark',
]


def _convert_method_output_to_tensor(file_or_fd, fn, convert_contiguous=False):
    r"""Takes a method invokes it. The output is converted to a tensor.

    Args:
        file_or_fd (str/FileDescriptor): File name or file descriptor
        fn (Callable[[...], Generator[str, numpy.ndarray]]): Function that has the signature (
            file name/descriptor) -> Generator(str, numpy.ndarray) and converts it to (
            file name/descriptor) -> Generator(str, torch.Tensor).
        convert_contiguous (bool): Determines whether the array should be converted into a
            contiguous layout. (Default: ``None``)

    Returns:
        Generator[str, torch.Tensor]: The string is the key and the tensor is vec/mat
    """
    if not IMPORT_KALDI_IO:
        raise ImportError('Could not import kaldi_io. Did you install it?')

    for key, np_arr in fn(file_or_fd):
        if convert_contiguous:
            np_arr = np.ascontiguousarray(np_arr)
        yield key, torch.from_numpy(np_arr)


[docs]def read_vec_int_ark(file_or_fd): r"""Create generator of (key,vector<int>) tuples, which reads from the ark file/stream. Args: file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor Returns: Generator[str, torch.Tensor]: The string is the key and the tensor is the vector read from file Example >>> # read ark to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_int_ark(file) } """ # Requires convert_contiguous to be True because elements from int32 vector are # sored in tuples: (sizeof(int32), value) so strides are (5,) instead of (4,) which will throw an error # in from_numpy as it expects strides to be a multiple of 4 (int32). return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_int_ark, convert_contiguous=True)
[docs]def read_vec_flt_scp(file_or_fd): r"""Create generator of (key,vector<float32/float64>) tuples, read according to Kaldi scp. Args: file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor Returns: Generator[str, torch.Tensor]: The string is the key and the tensor is the vector read from file Example >>> # read scp to a 'dictionary' >>> # d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_scp(file) } """ return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_scp)
[docs]def read_vec_flt_ark(file_or_fd): r"""Create generator of (key,vector<float32/float64>) tuples, which reads from the ark file/stream. Args: file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor Returns: Generator[str, torch.Tensor]: The string is the key and the tensor is the vector read from file Example >>> # read ark to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_ark(file) } """ return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_ark)
[docs]def read_mat_scp(file_or_fd): r"""Create generator of (key,matrix<float32/float64>) tuples, read according to Kaldi scp. Args: file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor Returns: Generator[str, torch.Tensor]: The string is the key and the tensor is the matrix read from file Example >>> # read scp to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_scp(file) } """ return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_scp)
[docs]def read_mat_ark(file_or_fd): r"""Create generator of (key,matrix<float32/float64>) tuples, which reads from the ark file/stream. Args: file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor Returns: Generator[str, torch.Tensor]: The string is the key and the tensor is the matrix read from file Example >>> # read ark to a 'dictionary' >>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_ark(file) } """ return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_ark)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources