std::experimental::propagate_const
Defined in header
<experimental/propagate_const>
|
||
template<class T>
class propagate_const; |
(library fundamentals TS v2) | |
std::experimental::propagate_const
is a const-propagating wrapper for pointers and pointer-like objects. It treats the wrapped pointer as a pointer to const
when accessed through a const
access path, hence the name.
The class satisfies the requirements of MoveConstructible
and MoveAssignable
if the underlying pointer-like type satisfies the corresponding concept, but propagate_const
is neither CopyConstructible
nor CopyAssignable
.
Type requirements | ||
-
T must be an object pointer type or a pointer-like class type, as specified below. The program is ill-formed if T is an array type, reference type, pointer to function type, pointer to (possibly cv-qualified) void , or if decltype(*std::declval<T&>()) is not an lvalue reference type.
|
Contents |
[edit] Requirements on pointer-like class types
If T
is a class type, it must satisfy the requirements in this subsection.
Given
-
t
, a modifiable lvalue expression of typeT
-
ct
, aconst T&
bound toT
-
element_type
, an object type
The following expressions must be valid and have their specified effects:
Expression | Return type | Pre-conditions | Operational semantics |
---|---|---|---|
t.get() | element_type*
|
||
ct.get() | element_type* or const element_type*
|
t.get() == ct.get() | |
*t | element_type&
|
t.get() != nullptr | *t refers to the same object as *(t.get())
|
*ct | element_type& or const element_type&
|
ct.get() != nullptr | *ct refers to the same object as *(ct.get())
|
t.operator->() | element_type*
|
t.get() != nullptr | t.operator->() == t.get() |
ct.operator->() | element_type* or const element_type*
|
ct.get() != nullptr | ct.operator->() == ct.get() |
(bool)t | bool
|
(bool)t is equivalent to t.get() != nullptr | |
(bool)ct | bool
|
(bool)ct is equivalent to ct.get() != nullptr |
Further, T
and const T
shall be contextually convertible to bool
.
In addition, if T
is implicitly convertible to element_type*
, then (element_type*)t
shall be equal to t.get()
. Similarly, if const T
is implicitly convertible to const element_type*
, then (const element_type*)ct
shall be equal to ct.get()
.
[edit] Member types
Member type | Definition |
element_type | std::remove_reference_t<decltype(*std::declval<T&>())>, the type of the object pointed to by T
|
[edit] Member functions
constructs a new propagate_const (public member function) |
|
destructs an propagate_const , destroying the contained pointer (public member function) |
|
assigns the propagate_const object (public member function) |
|
swaps the wrapped pointer (public member function) |
|
Observers |
|
returns a pointer to the object pointed to by the wrapped pointer (public member function) |
|
checks if the wrapped pointer is null (public member function) |
|
dereferences the wrapped pointer (public member function) |
|
implicit conversion function to pointer (public member function) |
[edit] Non-member functions
compares to another propagate_const , another pointer, or with nullptr (function template) |
|
specializes the swap algorithm (function template) |
|
Retrieves a reference to the wrapped pointer-like object (function template) |
[edit] Helper classes
hash support for propagate_const (class template specialization) |
|
std::equal_to<std::experimental::propagate_const>std::not_equal_to<std::experimental::propagate_const>std::less<std::experimental::propagate_const>std::greater<std::experimental::propagate_const>std::less_equal<std::experimental::propagate_const>std::greater_equal<std::experimental::propagate_const> |
Specializations of the standard comparison function objects for propagate_const (class template specialization) |
[edit] Example
#include <iostream> #include <memory> #include <experimental/propagate_const> struct X { void g() const { std::cout << "g (const)\n"; } void g() { std::cout << "g (non-const)\n"; } }; struct Y { Y() : m_ptrX(std::make_unique<X>()) { } void f() const { std::cout << "f (const)\n"; m_ptrX->g(); } void f() { std::cout << "f (non-const)\n"; m_ptrX->g(); } std::experimental::propagate_const<std::unique_ptr<X>> m_ptrX; }; int main() { Y y; y.f(); const Y cy; cy.f(); }
Output:
f (non-const) g (non-const) f (const) g (const)