std::bernoulli_distribution
From cppreference.com
                    
                                        
                    
                    
                                                            
                    | Defined in header  <random> | ||
| class bernoulli_distribution; | (since C++11) | |
Produces random boolean values, according to the discrete probability function. The probability of true is
- 
P(b|p) =⎧
 ⎨
 ⎩p if b == true
 1 − p if b == false
std::bernoulli_distribution satisfies RandomNumberDistribution
| Contents | 
[edit] Member types
| Member type | Definition | 
| result_type | bool | 
| param_type | the type of the parameter set, see RandomNumberDistribution. | 
[edit] Member functions
| constructs new distribution (public member function) | |
| resets the internal state of the distribution (public member function) | |
| Generation | |
| generates the next random number in the distribution (public member function) | |
| Characteristics | |
| returns the p distribution parameter (probability of generating true) (public member function) | |
| gets or sets the distribution parameter object (public member function) | |
| returns the minimum potentially generated value (public member function) | |
| returns the maximum potentially generated value (public member function) | |
[edit] Non-member functions
| compares two distribution objects (function) | |
| performs stream input and output on pseudo-random number distribution (function template) | 
[edit] Example
Run this code
#include <iostream> #include <iomanip> #include <string> #include <map> #include <random> int main() { std::random_device rd; std::mt19937 gen(rd()); // give "true" 1/4 of the time // give "false" 3/4 of the time std::bernoulli_distribution d(0.25); std::map<bool, int> hist; for(int n=0; n<10000; ++n) { ++hist[d(gen)]; } for(auto p : hist) { std::cout << std::boolalpha << std::setw(5) << p.first << ' ' << std::string(p.second/500, '*') << '\n'; } }
Possible output:
false *************** true ****
[edit] External links
Weisstein, Eric W. "Bernoulli Distribution." From MathWorld--A Wolfram Web Resource.