chainer.distributions.Laplace¶
- 
class chainer.distributions.Laplace(loc, scale)[source]¶
- Laplace Distribution. - The probability density function of the distribution is expressed as \[p(x;\mu,b) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)\]- Parameters
- loc ( - Variableor N-dimensional array) – Parameter of distribution representing the location \(\mu\).
- scale ( - Variableor N-dimensional array) – Parameter of distribution representing the scale \(b\).
 
 - Methods - 
cdf(x)[source]¶
- Evaluates the cumulative distribution function at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Cumulative distribution function value evaluated at x. 
- Return type
 
 - 
icdf(x)[source]¶
- Evaluates the inverse cumulative distribution function at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Inverse cumulative distribution function value evaluated at x. 
- Return type
 
 - 
log_cdf(x)[source]¶
- Evaluates the log of cumulative distribution function at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Logarithm of cumulative distribution function value evaluated at x. 
- Return type
 
 - 
log_prob(x)[source]¶
- Evaluates the logarithm of probability at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Logarithm of probability evaluated at x. 
- Return type
 
 - 
log_survival_function(x)[source]¶
- Evaluates the logarithm of survival function at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Logarithm of survival function value evaluated at x. 
- Return type
 
 - 
perplexity(x)[source]¶
- Evaluates the perplexity function at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Perplexity function value evaluated at x. 
- Return type
 
 - 
prob(x)[source]¶
- Evaluates probability at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Probability evaluated at x. 
- Return type
 
 - 
sample(sample_shape=())[source]¶
- Samples random points from the distribution. - This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited ditribution class, it is not recommended to override this function. Instead of doing this, it is preferable to override sample_n. 
 - 
sample_n(n)[source]¶
- Samples n random points from the distribution. - This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended to override this method. 
 - 
survival_function(x)[source]¶
- Evaluates the survival function at the given points. - Parameters
- x ( - Variableor N-dimensional array) – Data points in the domain of the distribution
- Returns
- Survival function value evaluated at x. 
- Return type
 
 - Attributes - 
batch_shape¶
- Returns the shape of a batch. - Returns
- The shape of a sample that is not identical and independent. 
- Return type
 
 - 
covariance¶
- Returns the covariance of the distribution. - Returns
- The covariance of the distribution. 
- Return type
 
 - 
entropy¶
 - 
event_shape¶
- Returns the shape of an event. - Returns
- The shape of a sample that is not identical and independent. 
- Return type
 
 - 
loc¶
 - 
mean¶
 - 
mode¶
 - 
params¶
- Returns the parameters of the distribution. - Returns
- The parameters of the distribution. 
- Return type
 
 - 
scale¶
 - 
stddev¶
 - 
support¶
- Returns the support of the distribution. - Returns
- String that means support of this distribution. 
- Return type
 
 - 
variance¶