chainer.distributions.Normal¶
-
class
chainer.distributions.Normal(loc, scale=None, **kwargs)[source]¶ Normal Distribution.
The probability density function of the distribution is expressed as
\[p(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\]- Parameters
loc (
Variableor N-dimensional array) – Parameter of distribution representing the location \(\mu\). This is the mean parameter.scale (
Variableor N-dimensional array) – Parameter of distribution representing the scale \(\sigma\). Either scale or log_scale (not both) must have a value.log_scale (
Variableor N-dimensional array) – Parameter of distribution representing the scale \(\log(\sigma)\). Either scale or log_scale (not both) must have a value.
Methods
-
cdf(x)[source]¶ Evaluates the cumulative distribution function at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Cumulative distribution function value evaluated at x.
- Return type
-
icdf(x)[source]¶ Evaluates the inverse cumulative distribution function at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Inverse cumulative distribution function value evaluated at x.
- Return type
-
log_cdf(x)[source]¶ Evaluates the log of cumulative distribution function at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Logarithm of cumulative distribution function value evaluated at x.
- Return type
-
log_prob(x)[source]¶ Evaluates the logarithm of probability at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Logarithm of probability evaluated at x.
- Return type
-
log_survival_function(x)[source]¶ Evaluates the logarithm of survival function at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Logarithm of survival function value evaluated at x.
- Return type
-
perplexity(x)[source]¶ Evaluates the perplexity function at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Perplexity function value evaluated at x.
- Return type
-
prob(x)[source]¶ Evaluates probability at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Probability evaluated at x.
- Return type
-
sample(sample_shape=())[source]¶ Samples random points from the distribution.
This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape + event_shape. On implementing sampling code in an inherited ditribution class, it is not recommended to override this function. Instead of doing this, it is preferable to override sample_n.
-
sample_n(n)[source]¶ Samples n random points from the distribution.
This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implementing sampling code in a subclass, it is recommended to override this method.
-
survival_function(x)[source]¶ Evaluates the survival function at the given points.
- Parameters
x (
Variableor N-dimensional array) – Data points in the domain of the distribution- Returns
Survival function value evaluated at x.
- Return type
Attributes
-
batch_shape¶ Returns the shape of a batch.
- Returns
The shape of a sample that is not identical and independent.
- Return type
-
covariance¶ Returns the covariance of the distribution.
- Returns
The covariance of the distribution.
- Return type
-
entropy¶
-
event_shape¶ Returns the shape of an event.
- Returns
The shape of a sample that is not identical and independent.
- Return type
-
loc¶
-
log_scale¶
-
mean¶
-
mode¶ Returns the mode of the distribution.
- Returns
The mode of the distribution.
- Return type
-
params¶ Returns the parameters of the distribution.
- Returns
The parameters of the distribution.
- Return type
-
scale¶
-
stddev¶
-
support¶ Returns the support of the distribution.
- Returns
String that means support of this distribution.
- Return type
-
variance¶