chainer.exporters.caffe.export¶
- 
chainer.exporters.caffe.export(model, args, directory=None, export_params=True, graph_name='Graph')[source]¶
- (Experimental) Export a computational graph as Caffe format. - Parameters
- model (Chain) – The model object you want to export in Caffe format. It should have - __call__()method because the second argument- argsis directly given to the model by the- ()accessor.
- args (list of ~chainer.Variable) – The arguments which are given to the model directly. 
- directory (str) – The directory used for saving the resulting Caffe model. If None, nothing is saved to the disk. 
- export_params (bool) – If True, this function exports all the parameters included in the given model at the same time. If False, the exported Caffe model doesn’t include any parameter values. 
- graph_name (str) – A string to be used for the - namefield of the graph in the exported Caffe model.
 
 - Note - Currently, this function supports networks that created by following layer functions. - This function can export at least following networks. - GoogLeNet 
- ResNet 
- VGG 
 - And, this function use testing (evaluation) mode. - Example - >>> from chainer.exporters import caffe >>> >>> class Model(chainer.Chain): ... def __init__(self): ... super(Model, self).__init__() ... with self.init_scope(): ... self.l1 = L.Convolution2D(None, 1, 1, 1, 0) ... self.b2 = L.BatchNormalization(1) ... self.l3 = L.Linear(None, 1) ... ... def __call__(self, x): ... h = F.relu(self.l1(x)) ... h = self.b2(h) ... return self.l3(h) ... >>> x = chainer.Variable(np.zeros((1, 10, 10, 10), np.float32)) >>> caffe.export(Model(), [x], None, True, 'test')