FFmpeg  4.0
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43 
44 #include <stdint.h>
45 
46 /** Rice parameters and corresponding index offsets for decoding the
47  * indices of scaled PARCOR values. The table chosen is set globally
48  * by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
53  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
54  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
55  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
59  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
63 };
64 
65 
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  * To be indexed by the Rice coded indices.
68  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  * Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
77  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
78  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
79  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
80  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
81  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
82  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
83  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
84  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
85  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
86  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
87  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
88  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
89  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
90  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
91  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
92  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
93  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
94  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
95  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
96  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
97  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
98  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
99  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
100  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
101  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
102  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
103  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
104 };
105 
106 
107 /** Gain values of p(0) for long-term prediction.
108  * To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111  { 0, 8, 16, 24},
112  {32, 40, 48, 56},
113  {64, 70, 76, 82},
114  {88, 92, 96, 100}
115 };
116 
117 
118 /** Inter-channel weighting factors for multi-channel correlation.
119  * To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122  204, 192, 179, 166, 153, 140, 128, 115,
123  102, 89, 76, 64, 51, 38, 25, 12,
124  0, -12, -25, -38, -51, -64, -76, -89,
125  -102, -115, -128, -140, -153, -166, -179, -192
126 };
127 
128 
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132  { 74, 44, 25, 13, 7, 3},
133  { 68, 42, 24, 13, 7, 3},
134  { 58, 39, 23, 13, 7, 3},
135  {126, 70, 37, 19, 10, 5},
136  {132, 70, 37, 20, 10, 5},
137  {124, 70, 38, 20, 10, 5},
138  {120, 69, 37, 20, 11, 5},
139  {116, 67, 37, 20, 11, 5},
140  {108, 66, 36, 20, 10, 5},
141  {102, 62, 36, 20, 10, 5},
142  { 88, 58, 34, 19, 10, 5},
143  {162, 89, 49, 25, 13, 7},
144  {156, 87, 49, 26, 14, 7},
145  {150, 86, 47, 26, 14, 7},
146  {142, 84, 47, 26, 14, 7},
147  {131, 79, 46, 26, 14, 7}
148 };
149 
150 
151 enum RA_Flag {
155 };
156 
157 
158 typedef struct ALSSpecificConfig {
159  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
160  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
162  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163  int frame_length; ///< frame length for each frame (last frame may differ)
164  int ra_distance; ///< distance between RA frames (in frames, 0...255)
165  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
166  int adapt_order; ///< adaptive order: 1 = on, 0 = off
167  int coef_table; ///< table index of Rice code parameters
168  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169  int max_order; ///< maximum prediction order (0..1023)
170  int block_switching; ///< number of block switching levels
171  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172  int sb_part; ///< sub-block partition
173  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
174  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175  int chan_config; ///< indicates that a chan_config_info field is present
176  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
177  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179  int *chan_pos; ///< original channel positions
180  int crc_enabled; ///< enable Cyclic Redundancy Checksum
182 
183 
184 typedef struct ALSChannelData {
190  int weighting[6];
192 
193 
194 typedef struct ALSDecContext {
199  const AVCRC *crc_table;
200  uint32_t crc_org; ///< CRC value of the original input data
201  uint32_t crc; ///< CRC value calculated from decoded data
202  unsigned int cur_frame_length; ///< length of the current frame to decode
203  unsigned int frame_id; ///< the frame ID / number of the current frame
204  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
205  unsigned int cs_switch; ///< if true, channel rearrangement is done
206  unsigned int num_blocks; ///< number of blocks used in the current frame
207  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
208  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
209  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
210  int ltp_lag_length; ///< number of bits used for ltp lag value
211  int *const_block; ///< contains const_block flags for all channels
212  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
213  unsigned int *opt_order; ///< contains opt_order flags for all channels
214  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
215  int *use_ltp; ///< contains use_ltp flags for all channels
216  int *ltp_lag; ///< contains ltp lag values for all channels
217  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
218  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
219  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
220  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
221  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
222  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
223  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
225  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226  int *reverted_channels; ///< stores a flag for each reverted channel
227  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
228  int32_t **raw_samples; ///< decoded raw samples for each channel
229  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
230  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
231  MLZ* mlz; ///< masked lz decompression structure
232  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
233  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
234  int *shift_value; ///< value by which the binary point is to be shifted for all channels
235  int *last_shift_value; ///< contains last shift value for all channels
236  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
237  unsigned char *larray; ///< buffer to store the output of masked lz decompression
238  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
239 } ALSDecContext;
240 
241 
242 typedef struct ALSBlockData {
243  unsigned int block_length; ///< number of samples within the block
244  unsigned int ra_block; ///< if true, this is a random access block
245  int *const_block; ///< if true, this is a constant value block
246  int js_blocks; ///< true if this block contains a difference signal
247  unsigned int *shift_lsbs; ///< shift of values for this block
248  unsigned int *opt_order; ///< prediction order of this block
249  int *store_prev_samples;///< if true, carryover samples have to be stored
250  int *use_ltp; ///< if true, long-term prediction is used
251  int *ltp_lag; ///< lag value for long-term prediction
252  int *ltp_gain; ///< gain values for ltp 5-tap filter
253  int32_t *quant_cof; ///< quantized parcor coefficients
254  int32_t *lpc_cof; ///< coefficients of the direct form prediction
255  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
256  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
257  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
258 } ALSBlockData;
259 
260 
262 {
263 #ifdef DEBUG
264  AVCodecContext *avctx = ctx->avctx;
265  ALSSpecificConfig *sconf = &ctx->sconf;
266 
267  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
268  ff_dlog(avctx, "floating = %i\n", sconf->floating);
269  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
270  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
271  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
272  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
273  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
274  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
275  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
276  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
277  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
278  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
279  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
280  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
281  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
282  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
283  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
284  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
285 #endif
286 }
287 
288 
289 /** Read an ALSSpecificConfig from a buffer into the output struct.
290  */
292 {
293  GetBitContext gb;
294  uint64_t ht_size;
295  int i, config_offset;
296  MPEG4AudioConfig m4ac = {0};
297  ALSSpecificConfig *sconf = &ctx->sconf;
298  AVCodecContext *avctx = ctx->avctx;
299  uint32_t als_id, header_size, trailer_size;
300  int ret;
301 
302  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
303  return ret;
304 
305  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
306  avctx->extradata_size * 8, 1);
307 
308  if (config_offset < 0)
309  return AVERROR_INVALIDDATA;
310 
311  skip_bits_long(&gb, config_offset);
312 
313  if (get_bits_left(&gb) < (30 << 3))
314  return AVERROR_INVALIDDATA;
315 
316  // read the fixed items
317  als_id = get_bits_long(&gb, 32);
318  avctx->sample_rate = m4ac.sample_rate;
319  skip_bits_long(&gb, 32); // sample rate already known
320  sconf->samples = get_bits_long(&gb, 32);
321  avctx->channels = m4ac.channels;
322  skip_bits(&gb, 16); // number of channels already known
323  skip_bits(&gb, 3); // skip file_type
324  sconf->resolution = get_bits(&gb, 3);
325  sconf->floating = get_bits1(&gb);
326  sconf->msb_first = get_bits1(&gb);
327  sconf->frame_length = get_bits(&gb, 16) + 1;
328  sconf->ra_distance = get_bits(&gb, 8);
329  sconf->ra_flag = get_bits(&gb, 2);
330  sconf->adapt_order = get_bits1(&gb);
331  sconf->coef_table = get_bits(&gb, 2);
332  sconf->long_term_prediction = get_bits1(&gb);
333  sconf->max_order = get_bits(&gb, 10);
334  sconf->block_switching = get_bits(&gb, 2);
335  sconf->bgmc = get_bits1(&gb);
336  sconf->sb_part = get_bits1(&gb);
337  sconf->joint_stereo = get_bits1(&gb);
338  sconf->mc_coding = get_bits1(&gb);
339  sconf->chan_config = get_bits1(&gb);
340  sconf->chan_sort = get_bits1(&gb);
341  sconf->crc_enabled = get_bits1(&gb);
342  sconf->rlslms = get_bits1(&gb);
343  skip_bits(&gb, 5); // skip 5 reserved bits
344  skip_bits1(&gb); // skip aux_data_enabled
345 
346 
347  // check for ALSSpecificConfig struct
348  if (als_id != MKBETAG('A','L','S','\0'))
349  return AVERROR_INVALIDDATA;
350 
351  ctx->cur_frame_length = sconf->frame_length;
352 
353  // read channel config
354  if (sconf->chan_config)
355  sconf->chan_config_info = get_bits(&gb, 16);
356  // TODO: use this to set avctx->channel_layout
357 
358 
359  // read channel sorting
360  if (sconf->chan_sort && avctx->channels > 1) {
361  int chan_pos_bits = av_ceil_log2(avctx->channels);
362  int bits_needed = avctx->channels * chan_pos_bits + 7;
363  if (get_bits_left(&gb) < bits_needed)
364  return AVERROR_INVALIDDATA;
365 
366  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
367  return AVERROR(ENOMEM);
368 
369  ctx->cs_switch = 1;
370 
371  for (i = 0; i < avctx->channels; i++) {
372  sconf->chan_pos[i] = -1;
373  }
374 
375  for (i = 0; i < avctx->channels; i++) {
376  int idx;
377 
378  idx = get_bits(&gb, chan_pos_bits);
379  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
380  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
381  ctx->cs_switch = 0;
382  break;
383  }
384  sconf->chan_pos[idx] = i;
385  }
386 
387  align_get_bits(&gb);
388  }
389 
390 
391  // read fixed header and trailer sizes,
392  // if size = 0xFFFFFFFF then there is no data field!
393  if (get_bits_left(&gb) < 64)
394  return AVERROR_INVALIDDATA;
395 
396  header_size = get_bits_long(&gb, 32);
397  trailer_size = get_bits_long(&gb, 32);
398  if (header_size == 0xFFFFFFFF)
399  header_size = 0;
400  if (trailer_size == 0xFFFFFFFF)
401  trailer_size = 0;
402 
403  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
404 
405 
406  // skip the header and trailer data
407  if (get_bits_left(&gb) < ht_size)
408  return AVERROR_INVALIDDATA;
409 
410  if (ht_size > INT32_MAX)
411  return AVERROR_PATCHWELCOME;
412 
413  skip_bits_long(&gb, ht_size);
414 
415 
416  // initialize CRC calculation
417  if (sconf->crc_enabled) {
418  if (get_bits_left(&gb) < 32)
419  return AVERROR_INVALIDDATA;
420 
423  ctx->crc = 0xFFFFFFFF;
424  ctx->crc_org = ~get_bits_long(&gb, 32);
425  } else
426  skip_bits_long(&gb, 32);
427  }
428 
429 
430  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
431 
433 
434  return 0;
435 }
436 
437 
438 /** Check the ALSSpecificConfig for unsupported features.
439  */
441 {
442  ALSSpecificConfig *sconf = &ctx->sconf;
443  int error = 0;
444 
445  // report unsupported feature and set error value
446  #define MISSING_ERR(cond, str, errval) \
447  { \
448  if (cond) { \
449  avpriv_report_missing_feature(ctx->avctx, \
450  str); \
451  error = errval; \
452  } \
453  }
454 
455  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
456 
457  return error;
458 }
459 
460 
461 /** Parse the bs_info field to extract the block partitioning used in
462  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
463  */
464 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
465  unsigned int div, unsigned int **div_blocks,
466  unsigned int *num_blocks)
467 {
468  if (n < 31 && ((bs_info << n) & 0x40000000)) {
469  // if the level is valid and the investigated bit n is set
470  // then recursively check both children at bits (2n+1) and (2n+2)
471  n *= 2;
472  div += 1;
473  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
474  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
475  } else {
476  // else the bit is not set or the last level has been reached
477  // (bit implicitly not set)
478  **div_blocks = div;
479  (*div_blocks)++;
480  (*num_blocks)++;
481  }
482 }
483 
484 
485 /** Read and decode a Rice codeword.
486  */
487 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
488 {
489  int max = get_bits_left(gb) - k;
490  int q = get_unary(gb, 0, max);
491  int r = k ? get_bits1(gb) : !(q & 1);
492 
493  if (k > 1) {
494  q <<= (k - 1);
495  q += get_bits_long(gb, k - 1);
496  } else if (!k) {
497  q >>= 1;
498  }
499  return r ? q : ~q;
500 }
501 
502 
503 /** Convert PARCOR coefficient k to direct filter coefficient.
504  */
505 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
506 {
507  int i, j;
508 
509  for (i = 0, j = k - 1; i < j; i++, j--) {
510  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
511  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
512  cof[i] += tmp1;
513  }
514  if (i == j)
515  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
516 
517  cof[k] = par[k];
518 }
519 
520 
521 /** Read block switching field if necessary and set actual block sizes.
522  * Also assure that the block sizes of the last frame correspond to the
523  * actual number of samples.
524  */
525 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
526  uint32_t *bs_info)
527 {
528  ALSSpecificConfig *sconf = &ctx->sconf;
529  GetBitContext *gb = &ctx->gb;
530  unsigned int *ptr_div_blocks = div_blocks;
531  unsigned int b;
532 
533  if (sconf->block_switching) {
534  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
535  *bs_info = get_bits_long(gb, bs_info_len);
536  *bs_info <<= (32 - bs_info_len);
537  }
538 
539  ctx->num_blocks = 0;
540  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
541 
542  // The last frame may have an overdetermined block structure given in
543  // the bitstream. In that case the defined block structure would need
544  // more samples than available to be consistent.
545  // The block structure is actually used but the block sizes are adapted
546  // to fit the actual number of available samples.
547  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
548  // This results in the actual block sizes: 2 2 1 0.
549  // This is not specified in 14496-3 but actually done by the reference
550  // codec RM22 revision 2.
551  // This appears to happen in case of an odd number of samples in the last
552  // frame which is actually not allowed by the block length switching part
553  // of 14496-3.
554  // The ALS conformance files feature an odd number of samples in the last
555  // frame.
556 
557  for (b = 0; b < ctx->num_blocks; b++)
558  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
559 
560  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
561  unsigned int remaining = ctx->cur_frame_length;
562 
563  for (b = 0; b < ctx->num_blocks; b++) {
564  if (remaining <= div_blocks[b]) {
565  div_blocks[b] = remaining;
566  ctx->num_blocks = b + 1;
567  break;
568  }
569 
570  remaining -= div_blocks[b];
571  }
572  }
573 }
574 
575 
576 /** Read the block data for a constant block
577  */
579 {
580  ALSSpecificConfig *sconf = &ctx->sconf;
581  AVCodecContext *avctx = ctx->avctx;
582  GetBitContext *gb = &ctx->gb;
583 
584  if (bd->block_length <= 0)
585  return AVERROR_INVALIDDATA;
586 
587  *bd->raw_samples = 0;
588  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
589  bd->js_blocks = get_bits1(gb);
590 
591  // skip 5 reserved bits
592  skip_bits(gb, 5);
593 
594  if (*bd->const_block) {
595  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
596  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
597  }
598 
599  // ensure constant block decoding by reusing this field
600  *bd->const_block = 1;
601 
602  return 0;
603 }
604 
605 
606 /** Decode the block data for a constant block
607  */
609 {
610  int smp = bd->block_length - 1;
611  int32_t val = *bd->raw_samples;
612  int32_t *dst = bd->raw_samples + 1;
613 
614  // write raw samples into buffer
615  for (; smp; smp--)
616  *dst++ = val;
617 }
618 
619 
620 /** Read the block data for a non-constant block
621  */
623 {
624  ALSSpecificConfig *sconf = &ctx->sconf;
625  AVCodecContext *avctx = ctx->avctx;
626  GetBitContext *gb = &ctx->gb;
627  unsigned int k;
628  unsigned int s[8];
629  unsigned int sx[8];
630  unsigned int sub_blocks, log2_sub_blocks, sb_length;
631  unsigned int start = 0;
632  unsigned int opt_order;
633  int sb;
634  int32_t *quant_cof = bd->quant_cof;
635  int32_t *current_res;
636 
637 
638  // ensure variable block decoding by reusing this field
639  *bd->const_block = 0;
640 
641  *bd->opt_order = 1;
642  bd->js_blocks = get_bits1(gb);
643 
644  opt_order = *bd->opt_order;
645 
646  // determine the number of subblocks for entropy decoding
647  if (!sconf->bgmc && !sconf->sb_part) {
648  log2_sub_blocks = 0;
649  } else {
650  if (sconf->bgmc && sconf->sb_part)
651  log2_sub_blocks = get_bits(gb, 2);
652  else
653  log2_sub_blocks = 2 * get_bits1(gb);
654  }
655 
656  sub_blocks = 1 << log2_sub_blocks;
657 
658  // do not continue in case of a damaged stream since
659  // block_length must be evenly divisible by sub_blocks
660  if (bd->block_length & (sub_blocks - 1)) {
661  av_log(avctx, AV_LOG_WARNING,
662  "Block length is not evenly divisible by the number of subblocks.\n");
663  return AVERROR_INVALIDDATA;
664  }
665 
666  sb_length = bd->block_length >> log2_sub_blocks;
667 
668  if (sconf->bgmc) {
669  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
670  for (k = 1; k < sub_blocks; k++)
671  s[k] = s[k - 1] + decode_rice(gb, 2);
672 
673  for (k = 0; k < sub_blocks; k++) {
674  sx[k] = s[k] & 0x0F;
675  s [k] >>= 4;
676  }
677  } else {
678  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
679  for (k = 1; k < sub_blocks; k++)
680  s[k] = s[k - 1] + decode_rice(gb, 0);
681  }
682  for (k = 1; k < sub_blocks; k++)
683  if (s[k] > 32) {
684  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
685  return AVERROR_INVALIDDATA;
686  }
687 
688  if (get_bits1(gb))
689  *bd->shift_lsbs = get_bits(gb, 4) + 1;
690 
691  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
692 
693 
694  if (!sconf->rlslms) {
695  if (sconf->adapt_order && sconf->max_order) {
696  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
697  2, sconf->max_order + 1));
698  *bd->opt_order = get_bits(gb, opt_order_length);
699  if (*bd->opt_order > sconf->max_order) {
700  *bd->opt_order = sconf->max_order;
701  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
702  return AVERROR_INVALIDDATA;
703  }
704  } else {
705  *bd->opt_order = sconf->max_order;
706  }
707  opt_order = *bd->opt_order;
708 
709  if (opt_order) {
710  int add_base;
711 
712  if (sconf->coef_table == 3) {
713  add_base = 0x7F;
714 
715  // read coefficient 0
716  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
717 
718  // read coefficient 1
719  if (opt_order > 1)
720  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
721 
722  // read coefficients 2 to opt_order
723  for (k = 2; k < opt_order; k++)
724  quant_cof[k] = get_bits(gb, 7);
725  } else {
726  int k_max;
727  add_base = 1;
728 
729  // read coefficient 0 to 19
730  k_max = FFMIN(opt_order, 20);
731  for (k = 0; k < k_max; k++) {
732  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
733  int offset = parcor_rice_table[sconf->coef_table][k][0];
734  quant_cof[k] = decode_rice(gb, rice_param) + offset;
735  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
736  av_log(avctx, AV_LOG_ERROR,
737  "quant_cof %"PRId32" is out of range.\n",
738  quant_cof[k]);
739  return AVERROR_INVALIDDATA;
740  }
741  }
742 
743  // read coefficients 20 to 126
744  k_max = FFMIN(opt_order, 127);
745  for (; k < k_max; k++)
746  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
747 
748  // read coefficients 127 to opt_order
749  for (; k < opt_order; k++)
750  quant_cof[k] = decode_rice(gb, 1);
751 
752  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
753 
754  if (opt_order > 1)
755  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
756  }
757 
758  for (k = 2; k < opt_order; k++)
759  quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
760  }
761  }
762 
763  // read LTP gain and lag values
764  if (sconf->long_term_prediction) {
765  *bd->use_ltp = get_bits1(gb);
766 
767  if (*bd->use_ltp) {
768  int r, c;
769 
770  bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
771  bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
772 
773  r = get_unary(gb, 0, 4);
774  c = get_bits(gb, 2);
775  if (r >= 4) {
776  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
777  return AVERROR_INVALIDDATA;
778  }
779 
780  bd->ltp_gain[2] = ltp_gain_values[r][c];
781 
782  bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
783  bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
784 
785  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
786  *bd->ltp_lag += FFMAX(4, opt_order + 1);
787  }
788  }
789 
790  // read first value and residuals in case of a random access block
791  if (bd->ra_block) {
792  if (opt_order)
793  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
794  if (opt_order > 1)
795  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
796  if (opt_order > 2)
797  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
798 
799  start = FFMIN(opt_order, 3);
800  }
801 
802  // read all residuals
803  if (sconf->bgmc) {
804  int delta[8];
805  unsigned int k [8];
806  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
807 
808  // read most significant bits
809  unsigned int high;
810  unsigned int low;
811  unsigned int value;
812 
813  ff_bgmc_decode_init(gb, &high, &low, &value);
814 
815  current_res = bd->raw_samples + start;
816 
817  for (sb = 0; sb < sub_blocks; sb++) {
818  unsigned int sb_len = sb_length - (sb ? 0 : start);
819 
820  k [sb] = s[sb] > b ? s[sb] - b : 0;
821  delta[sb] = 5 - s[sb] + k[sb];
822 
823  ff_bgmc_decode(gb, sb_len, current_res,
824  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
825 
826  current_res += sb_len;
827  }
828 
829  ff_bgmc_decode_end(gb);
830 
831 
832  // read least significant bits and tails
833  current_res = bd->raw_samples + start;
834 
835  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
836  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
837  unsigned int cur_k = k[sb];
838  unsigned int cur_s = s[sb];
839 
840  for (; start < sb_length; start++) {
841  int32_t res = *current_res;
842 
843  if (res == cur_tail_code) {
844  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
845  << (5 - delta[sb]);
846 
847  res = decode_rice(gb, cur_s);
848 
849  if (res >= 0) {
850  res += (max_msb ) << cur_k;
851  } else {
852  res -= (max_msb - 1) << cur_k;
853  }
854  } else {
855  if (res > cur_tail_code)
856  res--;
857 
858  if (res & 1)
859  res = -res;
860 
861  res >>= 1;
862 
863  if (cur_k) {
864  res *= 1 << cur_k;
865  res |= get_bits_long(gb, cur_k);
866  }
867  }
868 
869  *current_res++ = res;
870  }
871  }
872  } else {
873  current_res = bd->raw_samples + start;
874 
875  for (sb = 0; sb < sub_blocks; sb++, start = 0)
876  for (; start < sb_length; start++)
877  *current_res++ = decode_rice(gb, s[sb]);
878  }
879 
880  return 0;
881 }
882 
883 
884 /** Decode the block data for a non-constant block
885  */
887 {
888  ALSSpecificConfig *sconf = &ctx->sconf;
889  unsigned int block_length = bd->block_length;
890  unsigned int smp = 0;
891  unsigned int k;
892  int opt_order = *bd->opt_order;
893  int sb;
894  int64_t y;
895  int32_t *quant_cof = bd->quant_cof;
896  int32_t *lpc_cof = bd->lpc_cof;
897  int32_t *raw_samples = bd->raw_samples;
898  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
899  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
900 
901  // reverse long-term prediction
902  if (*bd->use_ltp) {
903  int ltp_smp;
904 
905  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
906  int center = ltp_smp - *bd->ltp_lag;
907  int begin = FFMAX(0, center - 2);
908  int end = center + 3;
909  int tab = 5 - (end - begin);
910  int base;
911 
912  y = 1 << 6;
913 
914  for (base = begin; base < end; base++, tab++)
915  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
916 
917  raw_samples[ltp_smp] += y >> 7;
918  }
919  }
920 
921  // reconstruct all samples from residuals
922  if (bd->ra_block) {
923  for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
924  y = 1 << 19;
925 
926  for (sb = 0; sb < smp; sb++)
927  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
928 
929  *raw_samples++ -= y >> 20;
930  parcor_to_lpc(smp, quant_cof, lpc_cof);
931  }
932  } else {
933  for (k = 0; k < opt_order; k++)
934  parcor_to_lpc(k, quant_cof, lpc_cof);
935 
936  // store previous samples in case that they have to be altered
937  if (*bd->store_prev_samples)
938  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
939  sizeof(*bd->prev_raw_samples) * sconf->max_order);
940 
941  // reconstruct difference signal for prediction (joint-stereo)
942  if (bd->js_blocks && bd->raw_other) {
943  int32_t *left, *right;
944 
945  if (bd->raw_other > raw_samples) { // D = R - L
946  left = raw_samples;
947  right = bd->raw_other;
948  } else { // D = R - L
949  left = bd->raw_other;
950  right = raw_samples;
951  }
952 
953  for (sb = -1; sb >= -sconf->max_order; sb--)
954  raw_samples[sb] = right[sb] - left[sb];
955  }
956 
957  // reconstruct shifted signal
958  if (*bd->shift_lsbs)
959  for (sb = -1; sb >= -sconf->max_order; sb--)
960  raw_samples[sb] >>= *bd->shift_lsbs;
961  }
962 
963  // reverse linear prediction coefficients for efficiency
964  lpc_cof = lpc_cof + opt_order;
965 
966  for (sb = 0; sb < opt_order; sb++)
967  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
968 
969  // reconstruct raw samples
970  raw_samples = bd->raw_samples + smp;
971  lpc_cof = lpc_cof_reversed + opt_order;
972 
973  for (; raw_samples < raw_samples_end; raw_samples++) {
974  y = 1 << 19;
975 
976  for (sb = -opt_order; sb < 0; sb++)
977  y += MUL64(lpc_cof[sb], raw_samples[sb]);
978 
979  *raw_samples -= y >> 20;
980  }
981 
982  raw_samples = bd->raw_samples;
983 
984  // restore previous samples in case that they have been altered
985  if (*bd->store_prev_samples)
986  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
987  sizeof(*raw_samples) * sconf->max_order);
988 
989  return 0;
990 }
991 
992 
993 /** Read the block data.
994  */
996 {
997  int ret;
998  GetBitContext *gb = &ctx->gb;
999  ALSSpecificConfig *sconf = &ctx->sconf;
1000 
1001  *bd->shift_lsbs = 0;
1002  // read block type flag and read the samples accordingly
1003  if (get_bits1(gb)) {
1004  ret = read_var_block_data(ctx, bd);
1005  } else {
1006  ret = read_const_block_data(ctx, bd);
1007  }
1008 
1009  if (!sconf->mc_coding || ctx->js_switch)
1010  align_get_bits(gb);
1011 
1012  return ret;
1013 }
1014 
1015 
1016 /** Decode the block data.
1017  */
1019 {
1020  unsigned int smp;
1021  int ret = 0;
1022 
1023  // read block type flag and read the samples accordingly
1024  if (*bd->const_block)
1025  decode_const_block_data(ctx, bd);
1026  else
1027  ret = decode_var_block_data(ctx, bd); // always return 0
1028 
1029  if (ret < 0)
1030  return ret;
1031 
1032  // TODO: read RLSLMS extension data
1033 
1034  if (*bd->shift_lsbs)
1035  for (smp = 0; smp < bd->block_length; smp++)
1036  bd->raw_samples[smp] <<= *bd->shift_lsbs;
1037 
1038  return 0;
1039 }
1040 
1041 
1042 /** Read and decode block data successively.
1043  */
1045 {
1046  int ret;
1047 
1048  if ((ret = read_block(ctx, bd)) < 0)
1049  return ret;
1050 
1051  return decode_block(ctx, bd);
1052 }
1053 
1054 
1055 /** Compute the number of samples left to decode for the current frame and
1056  * sets these samples to zero.
1057  */
1058 static void zero_remaining(unsigned int b, unsigned int b_max,
1059  const unsigned int *div_blocks, int32_t *buf)
1060 {
1061  unsigned int count = 0;
1062 
1063  while (b < b_max)
1064  count += div_blocks[b++];
1065 
1066  if (count)
1067  memset(buf, 0, sizeof(*buf) * count);
1068 }
1069 
1070 
1071 /** Decode blocks independently.
1072  */
1073 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1074  unsigned int c, const unsigned int *div_blocks,
1075  unsigned int *js_blocks)
1076 {
1077  int ret;
1078  unsigned int b;
1079  ALSBlockData bd = { 0 };
1080 
1081  bd.ra_block = ra_frame;
1082  bd.const_block = ctx->const_block;
1083  bd.shift_lsbs = ctx->shift_lsbs;
1084  bd.opt_order = ctx->opt_order;
1086  bd.use_ltp = ctx->use_ltp;
1087  bd.ltp_lag = ctx->ltp_lag;
1088  bd.ltp_gain = ctx->ltp_gain[0];
1089  bd.quant_cof = ctx->quant_cof[0];
1090  bd.lpc_cof = ctx->lpc_cof[0];
1092  bd.raw_samples = ctx->raw_samples[c];
1093 
1094 
1095  for (b = 0; b < ctx->num_blocks; b++) {
1096  bd.block_length = div_blocks[b];
1097 
1098  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1099  // damaged block, write zero for the rest of the frame
1100  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1101  return ret;
1102  }
1103  bd.raw_samples += div_blocks[b];
1104  bd.ra_block = 0;
1105  }
1106 
1107  return 0;
1108 }
1109 
1110 
1111 /** Decode blocks dependently.
1112  */
1113 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1114  unsigned int c, const unsigned int *div_blocks,
1115  unsigned int *js_blocks)
1116 {
1117  ALSSpecificConfig *sconf = &ctx->sconf;
1118  unsigned int offset = 0;
1119  unsigned int b;
1120  int ret;
1121  ALSBlockData bd[2] = { { 0 } };
1122 
1123  bd[0].ra_block = ra_frame;
1124  bd[0].const_block = ctx->const_block;
1125  bd[0].shift_lsbs = ctx->shift_lsbs;
1126  bd[0].opt_order = ctx->opt_order;
1128  bd[0].use_ltp = ctx->use_ltp;
1129  bd[0].ltp_lag = ctx->ltp_lag;
1130  bd[0].ltp_gain = ctx->ltp_gain[0];
1131  bd[0].quant_cof = ctx->quant_cof[0];
1132  bd[0].lpc_cof = ctx->lpc_cof[0];
1133  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1134  bd[0].js_blocks = *js_blocks;
1135 
1136  bd[1].ra_block = ra_frame;
1137  bd[1].const_block = ctx->const_block;
1138  bd[1].shift_lsbs = ctx->shift_lsbs;
1139  bd[1].opt_order = ctx->opt_order;
1141  bd[1].use_ltp = ctx->use_ltp;
1142  bd[1].ltp_lag = ctx->ltp_lag;
1143  bd[1].ltp_gain = ctx->ltp_gain[0];
1144  bd[1].quant_cof = ctx->quant_cof[0];
1145  bd[1].lpc_cof = ctx->lpc_cof[0];
1146  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1147  bd[1].js_blocks = *(js_blocks + 1);
1148 
1149  // decode all blocks
1150  for (b = 0; b < ctx->num_blocks; b++) {
1151  unsigned int s;
1152 
1153  bd[0].block_length = div_blocks[b];
1154  bd[1].block_length = div_blocks[b];
1155 
1156  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1157  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1158 
1159  bd[0].raw_other = bd[1].raw_samples;
1160  bd[1].raw_other = bd[0].raw_samples;
1161 
1162  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1163  (ret = read_decode_block(ctx, &bd[1])) < 0)
1164  goto fail;
1165 
1166  // reconstruct joint-stereo blocks
1167  if (bd[0].js_blocks) {
1168  if (bd[1].js_blocks)
1169  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1170 
1171  for (s = 0; s < div_blocks[b]; s++)
1172  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1173  } else if (bd[1].js_blocks) {
1174  for (s = 0; s < div_blocks[b]; s++)
1175  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1176  }
1177 
1178  offset += div_blocks[b];
1179  bd[0].ra_block = 0;
1180  bd[1].ra_block = 0;
1181  }
1182 
1183  // store carryover raw samples,
1184  // the others channel raw samples are stored by the calling function.
1185  memmove(ctx->raw_samples[c] - sconf->max_order,
1186  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1187  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1188 
1189  return 0;
1190 fail:
1191  // damaged block, write zero for the rest of the frame
1192  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1193  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1194  return ret;
1195 }
1196 
1197 static inline int als_weighting(GetBitContext *gb, int k, int off)
1198 {
1199  int idx = av_clip(decode_rice(gb, k) + off,
1200  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1201  return mcc_weightings[idx];
1202 }
1203 
1204 /** Read the channel data.
1205  */
1207 {
1208  GetBitContext *gb = &ctx->gb;
1209  ALSChannelData *current = cd;
1210  unsigned int channels = ctx->avctx->channels;
1211  int entries = 0;
1212 
1213  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1214  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1215 
1216  if (current->master_channel >= channels) {
1217  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1218  return AVERROR_INVALIDDATA;
1219  }
1220 
1221  if (current->master_channel != c) {
1222  current->time_diff_flag = get_bits1(gb);
1223  current->weighting[0] = als_weighting(gb, 1, 16);
1224  current->weighting[1] = als_weighting(gb, 2, 14);
1225  current->weighting[2] = als_weighting(gb, 1, 16);
1226 
1227  if (current->time_diff_flag) {
1228  current->weighting[3] = als_weighting(gb, 1, 16);
1229  current->weighting[4] = als_weighting(gb, 1, 16);
1230  current->weighting[5] = als_weighting(gb, 1, 16);
1231 
1232  current->time_diff_sign = get_bits1(gb);
1233  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1234  }
1235  }
1236 
1237  current++;
1238  entries++;
1239  }
1240 
1241  if (entries == channels) {
1242  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1243  return AVERROR_INVALIDDATA;
1244  }
1245 
1246  align_get_bits(gb);
1247  return 0;
1248 }
1249 
1250 
1251 /** Recursively reverts the inter-channel correlation for a block.
1252  */
1254  ALSChannelData **cd, int *reverted,
1255  unsigned int offset, int c)
1256 {
1257  ALSChannelData *ch = cd[c];
1258  unsigned int dep = 0;
1259  unsigned int channels = ctx->avctx->channels;
1260  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1261 
1262  if (reverted[c])
1263  return 0;
1264 
1265  reverted[c] = 1;
1266 
1267  while (dep < channels && !ch[dep].stop_flag) {
1268  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1269  ch[dep].master_channel);
1270 
1271  dep++;
1272  }
1273 
1274  if (dep == channels) {
1275  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1276  return AVERROR_INVALIDDATA;
1277  }
1278 
1279  bd->const_block = ctx->const_block + c;
1280  bd->shift_lsbs = ctx->shift_lsbs + c;
1281  bd->opt_order = ctx->opt_order + c;
1283  bd->use_ltp = ctx->use_ltp + c;
1284  bd->ltp_lag = ctx->ltp_lag + c;
1285  bd->ltp_gain = ctx->ltp_gain[c];
1286  bd->lpc_cof = ctx->lpc_cof[c];
1287  bd->quant_cof = ctx->quant_cof[c];
1288  bd->raw_samples = ctx->raw_samples[c] + offset;
1289 
1290  for (dep = 0; !ch[dep].stop_flag; dep++) {
1291  ptrdiff_t smp;
1292  ptrdiff_t begin = 1;
1293  ptrdiff_t end = bd->block_length - 1;
1294  int64_t y;
1295  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1296 
1297  if (ch[dep].master_channel == c)
1298  continue;
1299 
1300  if (ch[dep].time_diff_flag) {
1301  int t = ch[dep].time_diff_index;
1302 
1303  if (ch[dep].time_diff_sign) {
1304  t = -t;
1305  if (begin < t) {
1306  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1307  return AVERROR_INVALIDDATA;
1308  }
1309  begin -= t;
1310  } else {
1311  if (end < t) {
1312  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1313  return AVERROR_INVALIDDATA;
1314  }
1315  end -= t;
1316  }
1317 
1318  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1319  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1320  av_log(ctx->avctx, AV_LOG_ERROR,
1321  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1322  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1323  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1324  return AVERROR_INVALIDDATA;
1325  }
1326 
1327  for (smp = begin; smp < end; smp++) {
1328  y = (1 << 6) +
1329  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1330  MUL64(ch[dep].weighting[1], master[smp ]) +
1331  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1332  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1333  MUL64(ch[dep].weighting[4], master[smp + t]) +
1334  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1335 
1336  bd->raw_samples[smp] += y >> 7;
1337  }
1338  } else {
1339 
1340  if (begin - 1 < ctx->raw_buffer - master ||
1341  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1342  av_log(ctx->avctx, AV_LOG_ERROR,
1343  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1344  master + begin - 1, master + end + 1,
1345  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1346  return AVERROR_INVALIDDATA;
1347  }
1348 
1349  for (smp = begin; smp < end; smp++) {
1350  y = (1 << 6) +
1351  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1352  MUL64(ch[dep].weighting[1], master[smp ]) +
1353  MUL64(ch[dep].weighting[2], master[smp + 1]);
1354 
1355  bd->raw_samples[smp] += y >> 7;
1356  }
1357  }
1358  }
1359 
1360  return 0;
1361 }
1362 
1363 
1364 /** multiply two softfloats and handle the rounding off
1365  */
1367  uint64_t mantissa_temp;
1368  uint64_t mask_64;
1369  int cutoff_bit_count;
1370  unsigned char last_2_bits;
1371  unsigned int mantissa;
1372  int32_t sign;
1373  uint32_t return_val = 0;
1374  int bit_count = 48;
1375 
1376  sign = a.sign ^ b.sign;
1377 
1378  // Multiply mantissa bits in a 64-bit register
1379  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1380  mask_64 = (uint64_t)0x1 << 47;
1381 
1382  // Count the valid bit count
1383  while (!(mantissa_temp & mask_64) && mask_64) {
1384  bit_count--;
1385  mask_64 >>= 1;
1386  }
1387 
1388  // Round off
1389  cutoff_bit_count = bit_count - 24;
1390  if (cutoff_bit_count > 0) {
1391  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1392  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1393  // Need to round up
1394  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1395  }
1396  }
1397 
1398  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1399 
1400  // Need one more shift?
1401  if (mantissa & 0x01000000ul) {
1402  bit_count++;
1403  mantissa >>= 1;
1404  }
1405 
1406  if (!sign) {
1407  return_val = 0x80000000U;
1408  }
1409 
1410  return_val |= (a.exp + b.exp + bit_count - 47) << 23;
1411  return_val |= mantissa;
1412  return av_bits2sf_ieee754(return_val);
1413 }
1414 
1415 
1416 /** Read and decode the floating point sample data
1417  */
1418 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1419  AVCodecContext *avctx = ctx->avctx;
1420  GetBitContext *gb = &ctx->gb;
1421  SoftFloat_IEEE754 *acf = ctx->acf;
1422  int *shift_value = ctx->shift_value;
1423  int *last_shift_value = ctx->last_shift_value;
1424  int *last_acf_mantissa = ctx->last_acf_mantissa;
1425  int **raw_mantissa = ctx->raw_mantissa;
1426  int *nbits = ctx->nbits;
1427  unsigned char *larray = ctx->larray;
1428  int frame_length = ctx->cur_frame_length;
1429  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1430  unsigned int partA_flag;
1431  unsigned int highest_byte;
1432  unsigned int shift_amp;
1433  uint32_t tmp_32;
1434  int use_acf;
1435  int nchars;
1436  int i;
1437  int c;
1438  long k;
1439  long nbits_aligned;
1440  unsigned long acc;
1441  unsigned long j;
1442  uint32_t sign;
1443  uint32_t e;
1444  uint32_t mantissa;
1445 
1446  skip_bits_long(gb, 32); //num_bytes_diff_float
1447  use_acf = get_bits1(gb);
1448 
1449  if (ra_frame) {
1450  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1451  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1452  ff_mlz_flush_dict(ctx->mlz);
1453  }
1454 
1455  for (c = 0; c < avctx->channels; ++c) {
1456  if (use_acf) {
1457  //acf_flag
1458  if (get_bits1(gb)) {
1459  tmp_32 = get_bits(gb, 23);
1460  last_acf_mantissa[c] = tmp_32;
1461  } else {
1462  tmp_32 = last_acf_mantissa[c];
1463  }
1464  acf[c] = av_bits2sf_ieee754(tmp_32);
1465  } else {
1466  acf[c] = FLOAT_1;
1467  }
1468 
1469  highest_byte = get_bits(gb, 2);
1470  partA_flag = get_bits1(gb);
1471  shift_amp = get_bits1(gb);
1472 
1473  if (shift_amp) {
1474  shift_value[c] = get_bits(gb, 8);
1475  last_shift_value[c] = shift_value[c];
1476  } else {
1477  shift_value[c] = last_shift_value[c];
1478  }
1479 
1480  if (partA_flag) {
1481  if (!get_bits1(gb)) { //uncompressed
1482  for (i = 0; i < frame_length; ++i) {
1483  if (ctx->raw_samples[c][i] == 0) {
1484  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1485  }
1486  }
1487  } else { //compressed
1488  nchars = 0;
1489  for (i = 0; i < frame_length; ++i) {
1490  if (ctx->raw_samples[c][i] == 0) {
1491  nchars += 4;
1492  }
1493  }
1494 
1495  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1496  if(tmp_32 != nchars) {
1497  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1498  return AVERROR_INVALIDDATA;
1499  }
1500 
1501  for (i = 0; i < frame_length; ++i) {
1502  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1503  }
1504  }
1505  }
1506 
1507  //decode part B
1508  if (highest_byte) {
1509  for (i = 0; i < frame_length; ++i) {
1510  if (ctx->raw_samples[c][i] != 0) {
1511  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1512  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1513  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1514  } else {
1515  nbits[i] = 23;
1516  }
1517  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1518  }
1519  }
1520 
1521  if (!get_bits1(gb)) { //uncompressed
1522  for (i = 0; i < frame_length; ++i) {
1523  if (ctx->raw_samples[c][i] != 0) {
1524  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1525  }
1526  }
1527  } else { //compressed
1528  nchars = 0;
1529  for (i = 0; i < frame_length; ++i) {
1530  if (ctx->raw_samples[c][i]) {
1531  nchars += (int) nbits[i] / 8;
1532  if (nbits[i] & 7) {
1533  ++nchars;
1534  }
1535  }
1536  }
1537 
1538  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1539  if(tmp_32 != nchars) {
1540  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1541  return AVERROR_INVALIDDATA;
1542  }
1543 
1544  j = 0;
1545  for (i = 0; i < frame_length; ++i) {
1546  if (ctx->raw_samples[c][i]) {
1547  if (nbits[i] & 7) {
1548  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1549  } else {
1550  nbits_aligned = nbits[i];
1551  }
1552  acc = 0;
1553  for (k = 0; k < nbits_aligned/8; ++k) {
1554  acc = (acc << 8) + larray[j++];
1555  }
1556  acc >>= (nbits_aligned - nbits[i]);
1557  raw_mantissa[c][i] = acc;
1558  }
1559  }
1560  }
1561  }
1562 
1563  for (i = 0; i < frame_length; ++i) {
1564  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1565  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1566 
1567  if (ctx->raw_samples[c][i] != 0) {
1568  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1569  pcm_sf = multiply(acf[c], pcm_sf);
1570  }
1571 
1572  sign = pcm_sf.sign;
1573  e = pcm_sf.exp;
1574  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1575 
1576  while(mantissa >= 0x1000000) {
1577  e++;
1578  mantissa >>= 1;
1579  }
1580 
1581  if (mantissa) e += (shift_value[c] - 127);
1582  mantissa &= 0x007fffffUL;
1583 
1584  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1585  ctx->raw_samples[c][i] = tmp_32;
1586  } else {
1587  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1588  }
1589  }
1590  align_get_bits(gb);
1591  }
1592  return 0;
1593 }
1594 
1595 
1596 /** Read the frame data.
1597  */
1598 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1599 {
1600  ALSSpecificConfig *sconf = &ctx->sconf;
1601  AVCodecContext *avctx = ctx->avctx;
1602  GetBitContext *gb = &ctx->gb;
1603  unsigned int div_blocks[32]; ///< block sizes.
1604  unsigned int c;
1605  unsigned int js_blocks[2];
1606  uint32_t bs_info = 0;
1607  int ret;
1608 
1609  // skip the size of the ra unit if present in the frame
1610  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1611  skip_bits_long(gb, 32);
1612 
1613  if (sconf->mc_coding && sconf->joint_stereo) {
1614  ctx->js_switch = get_bits1(gb);
1615  align_get_bits(gb);
1616  }
1617 
1618  if (!sconf->mc_coding || ctx->js_switch) {
1619  int independent_bs = !sconf->joint_stereo;
1620 
1621  for (c = 0; c < avctx->channels; c++) {
1622  js_blocks[0] = 0;
1623  js_blocks[1] = 0;
1624 
1625  get_block_sizes(ctx, div_blocks, &bs_info);
1626 
1627  // if joint_stereo and block_switching is set, independent decoding
1628  // is signaled via the first bit of bs_info
1629  if (sconf->joint_stereo && sconf->block_switching)
1630  if (bs_info >> 31)
1631  independent_bs = 2;
1632 
1633  // if this is the last channel, it has to be decoded independently
1634  if (c == avctx->channels - 1 || (c & 1))
1635  independent_bs = 1;
1636 
1637  if (independent_bs) {
1638  ret = decode_blocks_ind(ctx, ra_frame, c,
1639  div_blocks, js_blocks);
1640  if (ret < 0)
1641  return ret;
1642  independent_bs--;
1643  } else {
1644  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1645  if (ret < 0)
1646  return ret;
1647 
1648  c++;
1649  }
1650 
1651  // store carryover raw samples
1652  memmove(ctx->raw_samples[c] - sconf->max_order,
1653  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1654  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1655  }
1656  } else { // multi-channel coding
1657  ALSBlockData bd = { 0 };
1658  int b, ret;
1659  int *reverted_channels = ctx->reverted_channels;
1660  unsigned int offset = 0;
1661 
1662  for (c = 0; c < avctx->channels; c++)
1663  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1664  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1665  return AVERROR_INVALIDDATA;
1666  }
1667 
1668  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1669 
1670  bd.ra_block = ra_frame;
1672 
1673  get_block_sizes(ctx, div_blocks, &bs_info);
1674 
1675  for (b = 0; b < ctx->num_blocks; b++) {
1676  bd.block_length = div_blocks[b];
1677  if (bd.block_length <= 0) {
1678  av_log(ctx->avctx, AV_LOG_WARNING,
1679  "Invalid block length %u in channel data!\n",
1680  bd.block_length);
1681  continue;
1682  }
1683 
1684  for (c = 0; c < avctx->channels; c++) {
1685  bd.const_block = ctx->const_block + c;
1686  bd.shift_lsbs = ctx->shift_lsbs + c;
1687  bd.opt_order = ctx->opt_order + c;
1689  bd.use_ltp = ctx->use_ltp + c;
1690  bd.ltp_lag = ctx->ltp_lag + c;
1691  bd.ltp_gain = ctx->ltp_gain[c];
1692  bd.lpc_cof = ctx->lpc_cof[c];
1693  bd.quant_cof = ctx->quant_cof[c];
1694  bd.raw_samples = ctx->raw_samples[c] + offset;
1695  bd.raw_other = NULL;
1696 
1697  if ((ret = read_block(ctx, &bd)) < 0)
1698  return ret;
1699  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1700  return ret;
1701  }
1702 
1703  for (c = 0; c < avctx->channels; c++) {
1704  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1705  reverted_channels, offset, c);
1706  if (ret < 0)
1707  return ret;
1708  }
1709  for (c = 0; c < avctx->channels; c++) {
1710  bd.const_block = ctx->const_block + c;
1711  bd.shift_lsbs = ctx->shift_lsbs + c;
1712  bd.opt_order = ctx->opt_order + c;
1714  bd.use_ltp = ctx->use_ltp + c;
1715  bd.ltp_lag = ctx->ltp_lag + c;
1716  bd.ltp_gain = ctx->ltp_gain[c];
1717  bd.lpc_cof = ctx->lpc_cof[c];
1718  bd.quant_cof = ctx->quant_cof[c];
1719  bd.raw_samples = ctx->raw_samples[c] + offset;
1720 
1721  if ((ret = decode_block(ctx, &bd)) < 0)
1722  return ret;
1723  }
1724 
1725  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1726  offset += div_blocks[b];
1727  bd.ra_block = 0;
1728  }
1729 
1730  // store carryover raw samples
1731  for (c = 0; c < avctx->channels; c++)
1732  memmove(ctx->raw_samples[c] - sconf->max_order,
1733  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1734  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1735  }
1736 
1737  if (sconf->floating) {
1738  read_diff_float_data(ctx, ra_frame);
1739  }
1740 
1741  if (get_bits_left(gb) < 0) {
1742  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1743  return AVERROR_INVALIDDATA;
1744  }
1745 
1746  return 0;
1747 }
1748 
1749 
1750 /** Decode an ALS frame.
1751  */
1752 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1753  AVPacket *avpkt)
1754 {
1755  ALSDecContext *ctx = avctx->priv_data;
1756  AVFrame *frame = data;
1757  ALSSpecificConfig *sconf = &ctx->sconf;
1758  const uint8_t *buffer = avpkt->data;
1759  int buffer_size = avpkt->size;
1760  int invalid_frame, ret;
1761  unsigned int c, sample, ra_frame, bytes_read, shift;
1762 
1763  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1764  return ret;
1765 
1766  // In the case that the distance between random access frames is set to zero
1767  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1768  // For the first frame, if prediction is used, all samples used from the
1769  // previous frame are assumed to be zero.
1770  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1771 
1772  // the last frame to decode might have a different length
1773  if (sconf->samples != 0xFFFFFFFF)
1774  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1775  sconf->frame_length);
1776  else
1777  ctx->cur_frame_length = sconf->frame_length;
1778 
1779  // decode the frame data
1780  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1781  av_log(ctx->avctx, AV_LOG_WARNING,
1782  "Reading frame data failed. Skipping RA unit.\n");
1783 
1784  ctx->frame_id++;
1785 
1786  /* get output buffer */
1787  frame->nb_samples = ctx->cur_frame_length;
1788  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1789  return ret;
1790 
1791  // transform decoded frame into output format
1792  #define INTERLEAVE_OUTPUT(bps) \
1793  { \
1794  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1795  shift = bps - ctx->avctx->bits_per_raw_sample; \
1796  if (!ctx->cs_switch) { \
1797  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1798  for (c = 0; c < avctx->channels; c++) \
1799  *dest++ = ctx->raw_samples[c][sample] << shift; \
1800  } else { \
1801  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1802  for (c = 0; c < avctx->channels; c++) \
1803  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1804  } \
1805  }
1806 
1807  if (ctx->avctx->bits_per_raw_sample <= 16) {
1808  INTERLEAVE_OUTPUT(16)
1809  } else {
1810  INTERLEAVE_OUTPUT(32)
1811  }
1812 
1813  // update CRC
1814  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1815  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1816 
1817  if (ctx->avctx->bits_per_raw_sample == 24) {
1818  int32_t *src = (int32_t *)frame->data[0];
1819 
1820  for (sample = 0;
1821  sample < ctx->cur_frame_length * avctx->channels;
1822  sample++) {
1823  int32_t v;
1824 
1825  if (swap)
1826  v = av_bswap32(src[sample]);
1827  else
1828  v = src[sample];
1829  if (!HAVE_BIGENDIAN)
1830  v >>= 8;
1831 
1832  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1833  }
1834  } else {
1835  uint8_t *crc_source;
1836 
1837  if (swap) {
1838  if (ctx->avctx->bits_per_raw_sample <= 16) {
1839  int16_t *src = (int16_t*) frame->data[0];
1840  int16_t *dest = (int16_t*) ctx->crc_buffer;
1841  for (sample = 0;
1842  sample < ctx->cur_frame_length * avctx->channels;
1843  sample++)
1844  *dest++ = av_bswap16(src[sample]);
1845  } else {
1846  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1847  (uint32_t *) frame->data[0],
1848  ctx->cur_frame_length * avctx->channels);
1849  }
1850  crc_source = ctx->crc_buffer;
1851  } else {
1852  crc_source = frame->data[0];
1853  }
1854 
1855  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1856  ctx->cur_frame_length * avctx->channels *
1858  }
1859 
1860 
1861  // check CRC sums if this is the last frame
1862  if (ctx->cur_frame_length != sconf->frame_length &&
1863  ctx->crc_org != ctx->crc) {
1864  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1865  if (avctx->err_recognition & AV_EF_EXPLODE)
1866  return AVERROR_INVALIDDATA;
1867  }
1868  }
1869 
1870  *got_frame_ptr = 1;
1871 
1872  bytes_read = invalid_frame ? buffer_size :
1873  (get_bits_count(&ctx->gb) + 7) >> 3;
1874 
1875  return bytes_read;
1876 }
1877 
1878 
1879 /** Uninitialize the ALS decoder.
1880  */
1882 {
1883  ALSDecContext *ctx = avctx->priv_data;
1884  int i;
1885 
1886  av_freep(&ctx->sconf.chan_pos);
1887 
1888  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1889 
1890  av_freep(&ctx->const_block);
1891  av_freep(&ctx->shift_lsbs);
1892  av_freep(&ctx->opt_order);
1894  av_freep(&ctx->use_ltp);
1895  av_freep(&ctx->ltp_lag);
1896  av_freep(&ctx->ltp_gain);
1897  av_freep(&ctx->ltp_gain_buffer);
1898  av_freep(&ctx->quant_cof);
1899  av_freep(&ctx->lpc_cof);
1900  av_freep(&ctx->quant_cof_buffer);
1901  av_freep(&ctx->lpc_cof_buffer);
1903  av_freep(&ctx->prev_raw_samples);
1904  av_freep(&ctx->raw_samples);
1905  av_freep(&ctx->raw_buffer);
1906  av_freep(&ctx->chan_data);
1907  av_freep(&ctx->chan_data_buffer);
1908  av_freep(&ctx->reverted_channels);
1909  av_freep(&ctx->crc_buffer);
1910  if (ctx->mlz) {
1911  av_freep(&ctx->mlz->dict);
1912  av_freep(&ctx->mlz);
1913  }
1914  av_freep(&ctx->acf);
1915  av_freep(&ctx->last_acf_mantissa);
1916  av_freep(&ctx->shift_value);
1917  av_freep(&ctx->last_shift_value);
1918  if (ctx->raw_mantissa) {
1919  for (i = 0; i < avctx->channels; i++) {
1920  av_freep(&ctx->raw_mantissa[i]);
1921  }
1922  av_freep(&ctx->raw_mantissa);
1923  }
1924  av_freep(&ctx->larray);
1925  av_freep(&ctx->nbits);
1926 
1927  return 0;
1928 }
1929 
1930 
1931 /** Initialize the ALS decoder.
1932  */
1934 {
1935  unsigned int c;
1936  unsigned int channel_size;
1937  int num_buffers, ret;
1938  ALSDecContext *ctx = avctx->priv_data;
1939  ALSSpecificConfig *sconf = &ctx->sconf;
1940  ctx->avctx = avctx;
1941 
1942  if (!avctx->extradata) {
1943  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1944  return AVERROR_INVALIDDATA;
1945  }
1946 
1947  if ((ret = read_specific_config(ctx)) < 0) {
1948  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1949  goto fail;
1950  }
1951 
1952  if ((ret = check_specific_config(ctx)) < 0) {
1953  goto fail;
1954  }
1955 
1956  if (sconf->bgmc) {
1957  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1958  if (ret < 0)
1959  goto fail;
1960  }
1961  if (sconf->floating) {
1962  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1963  avctx->bits_per_raw_sample = 32;
1964  } else {
1965  avctx->sample_fmt = sconf->resolution > 1
1967  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1968  if (avctx->bits_per_raw_sample > 32) {
1969  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1970  avctx->bits_per_raw_sample);
1971  ret = AVERROR_INVALIDDATA;
1972  goto fail;
1973  }
1974  }
1975 
1976  // set maximum Rice parameter for progressive decoding based on resolution
1977  // This is not specified in 14496-3 but actually done by the reference
1978  // codec RM22 revision 2.
1979  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1980 
1981  // set lag value for long-term prediction
1982  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1983  (avctx->sample_rate >= 192000);
1984 
1985  // allocate quantized parcor coefficient buffer
1986  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1987 
1988  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
1989  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
1990  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1991  sizeof(*ctx->quant_cof_buffer));
1992  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1993  sizeof(*ctx->lpc_cof_buffer));
1995  sizeof(*ctx->lpc_cof_buffer));
1996 
1997  if (!ctx->quant_cof || !ctx->lpc_cof ||
1998  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
1999  !ctx->lpc_cof_reversed_buffer) {
2000  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2001  ret = AVERROR(ENOMEM);
2002  goto fail;
2003  }
2004 
2005  // assign quantized parcor coefficient buffers
2006  for (c = 0; c < num_buffers; c++) {
2007  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2008  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2009  }
2010 
2011  // allocate and assign lag and gain data buffer for ltp mode
2012  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2013  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2014  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2015  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2016  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2017  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2018  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2019  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2020 
2021  if (!ctx->const_block || !ctx->shift_lsbs ||
2022  !ctx->opt_order || !ctx->store_prev_samples ||
2023  !ctx->use_ltp || !ctx->ltp_lag ||
2024  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2025  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2026  ret = AVERROR(ENOMEM);
2027  goto fail;
2028  }
2029 
2030  for (c = 0; c < num_buffers; c++)
2031  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2032 
2033  // allocate and assign channel data buffer for mcc mode
2034  if (sconf->mc_coding) {
2035  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2036  sizeof(*ctx->chan_data_buffer));
2037  ctx->chan_data = av_mallocz_array(num_buffers,
2038  sizeof(*ctx->chan_data));
2039  ctx->reverted_channels = av_malloc_array(num_buffers,
2040  sizeof(*ctx->reverted_channels));
2041 
2042  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2043  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2044  ret = AVERROR(ENOMEM);
2045  goto fail;
2046  }
2047 
2048  for (c = 0; c < num_buffers; c++)
2049  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2050  } else {
2051  ctx->chan_data = NULL;
2052  ctx->chan_data_buffer = NULL;
2053  ctx->reverted_channels = NULL;
2054  }
2055 
2056  channel_size = sconf->frame_length + sconf->max_order;
2057 
2058  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2059  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2060  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2061 
2062  if (sconf->floating) {
2063  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2064  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2065  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2066  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2067  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2068 
2069  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2070  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2071  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2072 
2073  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2074  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2075  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2076  ret = AVERROR(ENOMEM);
2077  goto fail;
2078  }
2079 
2080  ff_mlz_init_dict(avctx, ctx->mlz);
2081  ff_mlz_flush_dict(ctx->mlz);
2082 
2083  for (c = 0; c < avctx->channels; ++c) {
2084  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2085  }
2086  }
2087 
2088  // allocate previous raw sample buffer
2089  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2090  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2091  ret = AVERROR(ENOMEM);
2092  goto fail;
2093  }
2094 
2095  // assign raw samples buffers
2096  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2097  for (c = 1; c < avctx->channels; c++)
2098  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2099 
2100  // allocate crc buffer
2101  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2104  avctx->channels *
2106  sizeof(*ctx->crc_buffer));
2107  if (!ctx->crc_buffer) {
2108  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2109  ret = AVERROR(ENOMEM);
2110  goto fail;
2111  }
2112  }
2113 
2114  ff_bswapdsp_init(&ctx->bdsp);
2115 
2116  return 0;
2117 
2118 fail:
2119  decode_end(avctx);
2120  return ret;
2121 }
2122 
2123 
2124 /** Flush (reset) the frame ID after seeking.
2125  */
2126 static av_cold void flush(AVCodecContext *avctx)
2127 {
2128  ALSDecContext *ctx = avctx->priv_data;
2129 
2130  ctx->frame_id = 0;
2131 }
2132 
2133 
2135  .name = "als",
2136  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2137  .type = AVMEDIA_TYPE_AUDIO,
2138  .id = AV_CODEC_ID_MP4ALS,
2139  .priv_data_size = sizeof(ALSDecContext),
2140  .init = decode_init,
2141  .close = decode_end,
2142  .decode = decode_frame,
2143  .flush = flush,
2144  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2145 };
#define MUL64(a, b)
Definition: mathops.h:54
AVCodec ff_als_decoder
Definition: alsdec.c:2134
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1197
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:886
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:162
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:237
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:218
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:215
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:231
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:228
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:230
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:269
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:121
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:212
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:554
int block_switching
number of block switching levels
Definition: alsdec.c:170
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:177
channels
Definition: aptx.c:30
int size
Definition: avcodec.h:1431
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
const char * b
Definition: vf_curves.c:113
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:440
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:166
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1598
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:223
GetBitContext gb
Definition: alsdec.c:197
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:238
const char * master
Definition: vf_curves.c:114
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:204
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2741
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1044
#define INTERLEAVE_OUTPUT(bps)
#define src
Definition: vp8dsp.c:254
#define sample
AVCodec.
Definition: avcodec.h:3408
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:487
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:393
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:216
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:211
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:110
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1933
BswapDSPContext bdsp
Definition: alsdec.c:198
static char buffer[20]
Definition: seek.c:32
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:254
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2181
uint8_t
#define av_cold
Definition: attributes.h:82
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:608
float delta
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
#define AV_RB32
Definition: intreadwrite.h:130
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:217
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1618
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:176
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:173
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
const char data[16]
Definition: mxf.c:90
uint8_t * data
Definition: avcodec.h:1430
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:200
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1073
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:243
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1058
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:164
int weighting[6]
Definition: alsdec.c:190
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:220
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:225
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:171
#define U(x)
Definition: vp56_arith.h:37
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:205
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:596
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:250
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:165
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:210
#define PTRDIFF_SPECIFIER
Definition: internal.h:261
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:261
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:248
int * chan_pos
original channel positions
Definition: alsdec.c:179
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
AVCodecContext * avctx
Definition: alsdec.c:195
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:71
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:111
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1366
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:221
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1418
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:178
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:206
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
const char * name
Name of the codec implementation.
Definition: avcodec.h:3415
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:227
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1113
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:199
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:209
#define fail()
Definition: checkasm.h:116
ALSSpecificConfig sconf
Definition: alsdec.c:196
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:249
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:212
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2642
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:622
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:175
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:235
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1881
int * const_block
if true, this is a constant value block
Definition: alsdec.c:245
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2653
int n
Definition: avisynth_c.h:684
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:161
int time_diff_flag
Definition: alsdec.c:187
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:232
int master_channel
Definition: alsdec.c:186
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:201
int coef_table
table index of Rice code parameters
Definition: alsdec.c:167
if(ret< 0)
Definition: vf_mcdeint.c:279
static void error(const char *err)
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:578
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
int sb_part
sub-block partition
Definition: alsdec.c:172
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:257
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:208
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:252
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:246
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:244
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:505
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:234
int sample_rate
samples per second
Definition: avcodec.h:2173
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:464
main external API structure.
Definition: avcodec.h:1518
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:224
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1752
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1891
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:690
int extradata_size
Definition: avcodec.h:1619
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:2656
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:321
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:346
double value
Definition: eval.c:98
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:207
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:314
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1002
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:251
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:222
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2650
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:50
RA_Flag
Definition: alsdec.c:151
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:291
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:354
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:168
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:255
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:226
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:233
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:213
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:229
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:169
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:232
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:174
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:131
common internal api header.
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:256
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:33
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2126
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
int time_diff_index
Definition: alsdec.c:189
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:218
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:253
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata from a raw buffer to retrieve audio configuration. ...
Definition: mpeg4audio.c:155
#define MKBETAG(a, b, c, d)
Definition: common.h:367
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:464
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1545
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:219
int channels
number of audio channels
Definition: avcodec.h:2174
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:180
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:236
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:200
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1018
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:995
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:163
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:472
int stop_flag
Definition: alsdec.c:185
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:247
#define av_freep(p)
void INT64 INT64 count
Definition: avisynth_c.h:690
void INT64 start
Definition: avisynth_c.h:690
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
#define HAVE_BIGENDIAN
Definition: config.h:196
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1206
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:525
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:214
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:203
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1253
This structure stores compressed data.
Definition: avcodec.h:1407
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:284
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:959
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:202
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:284
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:160
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:191
int time_diff_sign
Definition: alsdec.c:188