FFmpeg  4.0
mdct15.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013-2014 Mozilla Corporation
3  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Celt non-power of 2 iMDCT
25  */
26 
27 #include <float.h>
28 #include <math.h>
29 #include <stddef.h>
30 
31 #include "config.h"
32 
33 #include "libavutil/attributes.h"
34 #include "libavutil/common.h"
35 
36 #include "mdct15.h"
37 
38 #define FFT_FLOAT 1
39 #include "fft-internal.h"
40 
41 #define CMUL3(c, a, b) CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
42 
44 {
45  MDCT15Context *s = *ps;
46 
47  if (!s)
48  return;
49 
50  ff_fft_end(&s->ptwo_fft);
51 
55  av_freep(&s->tmp);
56 
57  av_freep(ps);
58 }
59 
61 {
62  int i, j;
63  const int b_ptwo = s->ptwo_fft.nbits; /* Bits for the power of two FFTs */
64  const int l_ptwo = 1 << b_ptwo; /* Total length for the power of two FFTs */
65  const int inv_1 = l_ptwo << ((4 - b_ptwo) & 3); /* (2^b_ptwo)^-1 mod 15 */
66  const int inv_2 = 0xeeeeeeef & ((1U << b_ptwo) - 1); /* 15^-1 mod 2^b_ptwo */
67 
68  s->pfa_prereindex = av_malloc_array(15 * l_ptwo, sizeof(*s->pfa_prereindex));
69  if (!s->pfa_prereindex)
70  return 1;
71 
72  s->pfa_postreindex = av_malloc_array(15 * l_ptwo, sizeof(*s->pfa_postreindex));
73  if (!s->pfa_postreindex)
74  return 1;
75 
76  /* Pre/Post-reindex */
77  for (i = 0; i < l_ptwo; i++) {
78  for (j = 0; j < 15; j++) {
79  const int q_pre = ((l_ptwo * j)/15 + i) >> b_ptwo;
80  const int q_post = (((j*inv_1)/15) + (i*inv_2)) >> b_ptwo;
81  const int k_pre = 15*i + (j - q_pre*15)*(1 << b_ptwo);
82  const int k_post = i*inv_2*15 + j*inv_1 - 15*q_post*l_ptwo;
83  s->pfa_prereindex[i*15 + j] = k_pre << 1;
84  s->pfa_postreindex[k_post] = l_ptwo*j + i;
85  }
86  }
87 
88  return 0;
89 }
90 
91 /* Stride is hardcoded to 3 */
92 static inline void fft5(FFTComplex *out, FFTComplex *in, FFTComplex exptab[2])
93 {
94  FFTComplex z0[4], t[6];
95 
96  t[0].re = in[3].re + in[12].re;
97  t[0].im = in[3].im + in[12].im;
98  t[1].im = in[3].re - in[12].re;
99  t[1].re = in[3].im - in[12].im;
100  t[2].re = in[6].re + in[ 9].re;
101  t[2].im = in[6].im + in[ 9].im;
102  t[3].im = in[6].re - in[ 9].re;
103  t[3].re = in[6].im - in[ 9].im;
104 
105  out[0].re = in[0].re + in[3].re + in[6].re + in[9].re + in[12].re;
106  out[0].im = in[0].im + in[3].im + in[6].im + in[9].im + in[12].im;
107 
108  t[4].re = exptab[0].re * t[2].re - exptab[1].re * t[0].re;
109  t[4].im = exptab[0].re * t[2].im - exptab[1].re * t[0].im;
110  t[0].re = exptab[0].re * t[0].re - exptab[1].re * t[2].re;
111  t[0].im = exptab[0].re * t[0].im - exptab[1].re * t[2].im;
112  t[5].re = exptab[0].im * t[3].re - exptab[1].im * t[1].re;
113  t[5].im = exptab[0].im * t[3].im - exptab[1].im * t[1].im;
114  t[1].re = exptab[0].im * t[1].re + exptab[1].im * t[3].re;
115  t[1].im = exptab[0].im * t[1].im + exptab[1].im * t[3].im;
116 
117  z0[0].re = t[0].re - t[1].re;
118  z0[0].im = t[0].im - t[1].im;
119  z0[1].re = t[4].re + t[5].re;
120  z0[1].im = t[4].im + t[5].im;
121 
122  z0[2].re = t[4].re - t[5].re;
123  z0[2].im = t[4].im - t[5].im;
124  z0[3].re = t[0].re + t[1].re;
125  z0[3].im = t[0].im + t[1].im;
126 
127  out[1].re = in[0].re + z0[3].re;
128  out[1].im = in[0].im + z0[0].im;
129  out[2].re = in[0].re + z0[2].re;
130  out[2].im = in[0].im + z0[1].im;
131  out[3].re = in[0].re + z0[1].re;
132  out[3].im = in[0].im + z0[2].im;
133  out[4].re = in[0].re + z0[0].re;
134  out[4].im = in[0].im + z0[3].im;
135 }
136 
138 {
139  int k;
140  FFTComplex tmp1[5], tmp2[5], tmp3[5];
141 
142  fft5(tmp1, in + 0, exptab + 19);
143  fft5(tmp2, in + 1, exptab + 19);
144  fft5(tmp3, in + 2, exptab + 19);
145 
146  for (k = 0; k < 5; k++) {
147  FFTComplex t[2];
148 
149  CMUL3(t[0], tmp2[k], exptab[k]);
150  CMUL3(t[1], tmp3[k], exptab[2 * k]);
151  out[stride*k].re = tmp1[k].re + t[0].re + t[1].re;
152  out[stride*k].im = tmp1[k].im + t[0].im + t[1].im;
153 
154  CMUL3(t[0], tmp2[k], exptab[k + 5]);
155  CMUL3(t[1], tmp3[k], exptab[2 * (k + 5)]);
156  out[stride*(k + 5)].re = tmp1[k].re + t[0].re + t[1].re;
157  out[stride*(k + 5)].im = tmp1[k].im + t[0].im + t[1].im;
158 
159  CMUL3(t[0], tmp2[k], exptab[k + 10]);
160  CMUL3(t[1], tmp3[k], exptab[2 * k + 5]);
161  out[stride*(k + 10)].re = tmp1[k].re + t[0].re + t[1].re;
162  out[stride*(k + 10)].im = tmp1[k].im + t[0].im + t[1].im;
163  }
164 }
165 
166 static void mdct15(MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
167 {
168  int i, j;
169  const int len4 = s->len4, len3 = len4 * 3, len8 = len4 >> 1;
170  const int l_ptwo = 1 << s->ptwo_fft.nbits;
171  FFTComplex fft15in[15];
172 
173  /* Folding and pre-reindexing */
174  for (i = 0; i < l_ptwo; i++) {
175  for (j = 0; j < 15; j++) {
176  const int k = s->pfa_prereindex[i*15 + j];
177  FFTComplex tmp, exp = s->twiddle_exptab[k >> 1];
178  if (k < len4) {
179  tmp.re = -src[ len4 + k] + src[1*len4 - 1 - k];
180  tmp.im = -src[ len3 + k] - src[1*len3 - 1 - k];
181  } else {
182  tmp.re = -src[ len4 + k] - src[5*len4 - 1 - k];
183  tmp.im = src[-len4 + k] - src[1*len3 - 1 - k];
184  }
185  CMUL(fft15in[j].im, fft15in[j].re, tmp.re, tmp.im, exp.re, exp.im);
186  }
187  s->fft15(s->tmp + s->ptwo_fft.revtab[i], fft15in, s->exptab, l_ptwo);
188  }
189 
190  /* Then a 15xN FFT (where N is a power of two) */
191  for (i = 0; i < 15; i++)
192  s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);
193 
194  /* Reindex again, apply twiddles and output */
195  for (i = 0; i < len8; i++) {
196  const int i0 = len8 + i, i1 = len8 - i - 1;
197  const int s0 = s->pfa_postreindex[i0], s1 = s->pfa_postreindex[i1];
198 
199  CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], s->tmp[s0].re, s->tmp[s0].im,
200  s->twiddle_exptab[i0].im, s->twiddle_exptab[i0].re);
201  CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], s->tmp[s1].re, s->tmp[s1].im,
202  s->twiddle_exptab[i1].im, s->twiddle_exptab[i1].re);
203  }
204 }
205 
206 static void imdct15_half(MDCT15Context *s, float *dst, const float *src,
207  ptrdiff_t stride)
208 {
209  FFTComplex fft15in[15];
210  FFTComplex *z = (FFTComplex *)dst;
211  int i, j, len8 = s->len4 >> 1, l_ptwo = 1 << s->ptwo_fft.nbits;
212  const float *in1 = src, *in2 = src + (s->len2 - 1) * stride;
213 
214  /* Reindex input, putting it into a buffer and doing an Nx15 FFT */
215  for (i = 0; i < l_ptwo; i++) {
216  for (j = 0; j < 15; j++) {
217  const int k = s->pfa_prereindex[i*15 + j];
218  FFTComplex tmp = { in2[-k*stride], in1[k*stride] };
219  CMUL3(fft15in[j], tmp, s->twiddle_exptab[k >> 1]);
220  }
221  s->fft15(s->tmp + s->ptwo_fft.revtab[i], fft15in, s->exptab, l_ptwo);
222  }
223 
224  /* Then a 15xN FFT (where N is a power of two) */
225  for (i = 0; i < 15; i++)
226  s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);
227 
228  /* Reindex again, apply twiddles and output */
229  s->postreindex(z, s->tmp, s->twiddle_exptab, s->pfa_postreindex, len8);
230 }
231 
233  int *lut, ptrdiff_t len8)
234 {
235  int i;
236 
237  /* Reindex again, apply twiddles and output */
238  for (i = 0; i < len8; i++) {
239  const int i0 = len8 + i, i1 = len8 - i - 1;
240  const int s0 = lut[i0], s1 = lut[i1];
241 
242  CMUL(out[i1].re, out[i0].im, in[s1].im, in[s1].re, exp[i1].im, exp[i1].re);
243  CMUL(out[i0].re, out[i1].im, in[s0].im, in[s0].re, exp[i0].im, exp[i0].re);
244  }
245 }
246 
247 av_cold int ff_mdct15_init(MDCT15Context **ps, int inverse, int N, double scale)
248 {
249  MDCT15Context *s;
250  double alpha, theta;
251  int len2 = 15 * (1 << N);
252  int len = 2 * len2;
253  int i;
254 
255  /* Tested and verified to work on everything in between */
256  if ((N < 2) || (N > 13))
257  return AVERROR(EINVAL);
258 
259  s = av_mallocz(sizeof(*s));
260  if (!s)
261  return AVERROR(ENOMEM);
262 
263  s->fft_n = N - 1;
264  s->len4 = len2 / 2;
265  s->len2 = len2;
266  s->inverse = inverse;
267  s->fft15 = fft15_c;
268  s->mdct = mdct15;
271 
272  if (ff_fft_init(&s->ptwo_fft, N - 1, s->inverse) < 0)
273  goto fail;
274 
275  if (init_pfa_reindex_tabs(s))
276  goto fail;
277 
278  s->tmp = av_malloc_array(len, 2 * sizeof(*s->tmp));
279  if (!s->tmp)
280  goto fail;
281 
282  s->twiddle_exptab = av_malloc_array(s->len4, sizeof(*s->twiddle_exptab));
283  if (!s->twiddle_exptab)
284  goto fail;
285 
286  theta = 0.125f + (scale < 0 ? s->len4 : 0);
287  scale = sqrt(fabs(scale));
288  for (i = 0; i < s->len4; i++) {
289  alpha = 2 * M_PI * (i + theta) / len;
290  s->twiddle_exptab[i].re = cosf(alpha) * scale;
291  s->twiddle_exptab[i].im = sinf(alpha) * scale;
292  }
293 
294  /* 15-point FFT exptab */
295  for (i = 0; i < 19; i++) {
296  if (i < 15) {
297  double theta = (2.0f * M_PI * i) / 15.0f;
298  if (!s->inverse)
299  theta *= -1;
300  s->exptab[i].re = cosf(theta);
301  s->exptab[i].im = sinf(theta);
302  } else { /* Wrap around to simplify fft15 */
303  s->exptab[i] = s->exptab[i - 15];
304  }
305  }
306 
307  /* 5-point FFT exptab */
308  s->exptab[19].re = cosf(2.0f * M_PI / 5.0f);
309  s->exptab[19].im = sinf(2.0f * M_PI / 5.0f);
310  s->exptab[20].re = cosf(1.0f * M_PI / 5.0f);
311  s->exptab[20].im = sinf(1.0f * M_PI / 5.0f);
312 
313  /* Invert the phase for an inverse transform, do nothing for a forward transform */
314  if (s->inverse) {
315  s->exptab[19].im *= -1;
316  s->exptab[20].im *= -1;
317  }
318 
319  if (ARCH_X86)
321 
322  *ps = s;
323 
324  return 0;
325 
326 fail:
327  ff_mdct15_uninit(&s);
328  return AVERROR(ENOMEM);
329 }
const char * s
Definition: avisynth_c.h:768
static float alpha(float a)
float re
Definition: fft.c:82
FFTSample re
Definition: avfft.h:38
static void mdct15(MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
Definition: mdct15.c:166
static void fft5(FFTComplex *out, FFTComplex *in, FFTComplex exptab[2])
Definition: mdct15.c:92
#define src
Definition: vp8dsp.c:254
int stride
Definition: mace.c:144
#define N
Definition: af_mcompand.c:54
Macro definitions for various function/variable attributes.
#define av_cold
Definition: attributes.h:82
static int init_pfa_reindex_tabs(MDCT15Context *s)
Definition: mdct15.c:60
void(* mdct)(struct MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
Definition: mdct15.h:49
#define CMUL(dre, dim, are, aim, bre, bim)
Definition: fft-internal.h:76
int fft_n
Definition: mdct15.h:29
static void postrotate_c(FFTComplex *out, FFTComplex *in, FFTComplex *exp, int *lut, ptrdiff_t len8)
Definition: mdct15.c:232
#define cosf(x)
Definition: libm.h:78
av_cold int ff_mdct15_init(MDCT15Context **ps, int inverse, int N, double scale)
Definition: mdct15.c:247
#define U(x)
Definition: vp56_arith.h:37
FFTComplex * twiddle_exptab
Definition: mdct15.h:38
#define ARCH_X86
Definition: config.h:38
#define AVERROR(e)
Definition: error.h:43
#define s0
Definition: regdef.h:37
void ff_mdct15_init_x86(MDCT15Context *s)
Definition: mdct15_init.c:86
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
#define fail()
Definition: checkasm.h:116
int8_t exp
Definition: eval.c:72
int len2
Definition: mdct15.h:30
int inverse
Definition: mdct15.h:32
FFTContext ptwo_fft
Definition: mdct15.h:36
int * pfa_prereindex
Definition: mdct15.h:33
int nbits
Definition: fft.h:89
#define ff_fft_init
Definition: fft.h:149
FFTComplex * tmp
Definition: mdct15.h:37
static void imdct15_half(MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
Definition: mdct15.c:206
int * pfa_postreindex
Definition: mdct15.h:34
void(* postreindex)(FFTComplex *out, FFTComplex *in, FFTComplex *exp, int *lut, ptrdiff_t len8)
Definition: mdct15.h:46
#define sinf(x)
Definition: libm.h:419
void(* imdct_half)(struct MDCT15Context *s, float *dst, const float *src, ptrdiff_t stride)
Definition: mdct15.h:52
#define CMUL3(c, a, b)
Definition: mdct15.c:41
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
float im
Definition: fft.c:82
int len4
Definition: mdct15.h:31
static void fft15_c(FFTComplex *out, FFTComplex *in, FFTComplex *exptab, ptrdiff_t stride)
Definition: mdct15.c:137
#define s1
Definition: regdef.h:38
FFTComplex exptab[64]
Definition: mdct15.h:40
FFTSample im
Definition: avfft.h:38
common internal and external API header
#define ff_fft_end
Definition: fft.h:150
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
Definition: fft.h:106
av_cold void ff_mdct15_uninit(MDCT15Context **ps)
Definition: mdct15.c:43
void(* fft15)(FFTComplex *out, FFTComplex *in, FFTComplex *exptab, ptrdiff_t stride)
Definition: mdct15.h:43
int len
FILE * out
Definition: movenc.c:54
#define av_freep(p)
uint16_t * revtab
Definition: fft.h:91
#define M_PI
Definition: mathematics.h:52
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
#define av_malloc_array(a, b)
static struct @125 * exptab
static uint8_t tmp[11]
Definition: aes_ctr.c:26