librosa.onset.onset_strength_multi¶
-
librosa.onset.
onset_strength_multi
(y=None, sr=22050, S=None, lag=1, max_size=1, detrend=False, center=True, feature=None, aggregate=None, channels=None, **kwargs)[source]¶ Compute a spectral flux onset strength envelope across multiple channels.
Onset strength for channel i at time t is determined by:
mean_{f in channels[i]} max(0, S[f, t+1] - S[f, t])
Parameters: - y : np.ndarray [shape=(n,)]
audio time-series
- sr : number > 0 [scalar]
sampling rate of y
- S : np.ndarray [shape=(d, m)]
pre-computed (log-power) spectrogram
- lag : int > 0
time lag for computing differences
- max_size : int > 0
size (in frequency bins) of the local max filter. set to 1 to disable filtering.
- detrend : bool [scalar]
Filter the onset strength to remove the DC component
- center : bool [scalar]
Shift the onset function by n_fft / (2 * hop_length) frames
- feature : function
Function for computing time-series features, eg, scaled spectrograms. By default, uses
librosa.feature.melspectrogram
with fmax=11025.0- aggregate : function
Aggregation function to use when combining onsets at different frequency bins.
Default:
np.mean
- channels : list or None
Array of channel boundaries or slice objects. If None, then a single channel is generated to span all bands.
- kwargs : additional keyword arguments
Additional parameters to feature(), if S is not provided.
Returns: - onset_envelope : np.ndarray [shape=(n_channels, m)]
array containing the onset strength envelope for each specified channel
Raises: - ParameterError
if neither (y, sr) nor S are provided
See also
Notes
This function caches at level 30.
Examples
First, load some audio and plot the spectrogram
>>> import matplotlib.pyplot as plt >>> y, sr = librosa.load(librosa.util.example_audio_file(), ... duration=10.0) >>> D = librosa.stft(y) >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log') >>> plt.title('Power spectrogram')
Construct a standard onset function over four sub-bands
>>> onset_subbands = librosa.onset.onset_strength_multi(y=y, sr=sr, ... channels=[0, 32, 64, 96, 128]) >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(onset_subbands, x_axis='time') >>> plt.ylabel('Sub-bands') >>> plt.title('Sub-band onset strength')