the Fast Self-tuning Background Subtraction Algorithm from
More...
#include <opencv2/saliency/saliencySpecializedClasses.hpp>
the Fast Self-tuning Background Subtraction Algorithm from
A Fast Self-tuning Background Subtraction Algorithm.
This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2] [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014BinWangApr2014
cv::saliency::MotionSaliencyBinWangApr2014::MotionSaliencyBinWangApr2014 |
( |
| ) |
|
virtual cv::saliency::MotionSaliencyBinWangApr2014::~MotionSaliencyBinWangApr2014 |
( |
| ) |
|
|
virtual |
bool cv::saliency::MotionSaliencyBinWangApr2014::computeSaliency |
( |
InputArray |
image, |
|
|
OutputArray |
saliencyMap |
|
) |
| |
|
inline |
Python: |
---|
| retval, saliencyMap | = | cv.saliency_MotionSaliencyBinWangApr2014.computeSaliency( | image[, saliencyMap] | ) |
bool cv::saliency::MotionSaliencyBinWangApr2014::computeSaliencyImpl |
( |
InputArray |
image, |
|
|
OutputArray |
saliencyMap |
|
) |
| |
|
protectedvirtual |
Performs all the operations and calls all internal functions necessary for the accomplishment of the Fast Self-tuning Background Subtraction Algorithm algorithm.
- Parameters
-
image | input image. According to the needs of this specialized algorithm, the param image is a single Mat. |
saliencyMap | Saliency Map. Is a binarized map that, in accordance with the nature of the algorithm, highlights the moving objects or areas of change in the scene. The saliency map is given by a single Mat (one for each frame of an hypothetical video stream). |
Implements cv::saliency::MotionSaliency.
Python: |
---|
| retval | = | cv.saliency.MotionSaliencyBinWangApr2014_create( | | ) |
int cv::saliency::MotionSaliencyBinWangApr2014::getImageHeight |
( |
| ) |
const |
|
inline |
Python: |
---|
| retval | = | cv.saliency_MotionSaliencyBinWangApr2014.getImageHeight( | | ) |
int cv::saliency::MotionSaliencyBinWangApr2014::getImageWidth |
( |
| ) |
const |
|
inline |
Python: |
---|
| retval | = | cv.saliency_MotionSaliencyBinWangApr2014.getImageWidth( | | ) |
bool cv::saliency::MotionSaliencyBinWangApr2014::init |
( |
| ) |
|
Python: |
---|
| retval | = | cv.saliency_MotionSaliencyBinWangApr2014.init( | | ) |
This function allows the correct initialization of all data structures that will be used by the algorithm.
void cv::saliency::MotionSaliencyBinWangApr2014::setImageHeight |
( |
int |
val | ) |
|
|
inline |
Python: |
---|
| None | = | cv.saliency_MotionSaliencyBinWangApr2014.setImageHeight( | val | ) |
void cv::saliency::MotionSaliencyBinWangApr2014::setImagesize |
( |
int |
W, |
|
|
int |
H |
|
) |
| |
Python: |
---|
| None | = | cv.saliency_MotionSaliencyBinWangApr2014.setImagesize( | W, H | ) |
This is a utility function that allows to set the correct size (taken from the input image) in the corresponding variables that will be used to size the data structures of the algorithm.
- Parameters
-
W | width of input image |
H | height of input image |
void cv::saliency::MotionSaliencyBinWangApr2014::setImageWidth |
( |
int |
val | ) |
|
|
inline |
Python: |
---|
| None | = | cv.saliency_MotionSaliencyBinWangApr2014.setImageWidth( | val | ) |
The documentation for this class was generated from the following file: