Shortcuts

Source code for torch

r"""
The torch package contains data structures for multi-dimensional
tensors and mathematical operations over these are defined.
Additionally, it provides many utilities for efficient serializing of
Tensors and arbitrary types, and other useful utilities.

It has a CUDA counterpart, that enables you to run your tensor computations
on an NVIDIA GPU with compute capability >= 3.0.
"""

import os
import sys
import platform
from ._utils import _import_dotted_name
from ._utils_internal import get_file_path, prepare_multiprocessing_environment
from .version import __version__
from ._six import string_classes as _string_classes

__all__ = [
    'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type',
    'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed',
    'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
    'no_grad', 'enable_grad', 'rand', 'randn',
    'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
    'ShortStorage', 'CharStorage', 'ByteStorage',
    'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
    'ShortTensor', 'CharTensor', 'ByteTensor', 'Tensor',
]

################################################################################
# Load the extension module
################################################################################

# Loading the extension with RTLD_GLOBAL option allows to not link extension
# modules against the _C shared object. Their missing THP symbols will be
# automatically filled by the dynamic loader.
import os as _dl_flags

# if we have numpy, it *must* be imported before the call to setdlopenflags()
# or there is risk that later c modules will segfault when importing numpy
try:
    import numpy as _np
except ImportError:
    pass

if platform.system() == 'Windows':
    # first get nvToolsExt PATH
    def get_nvToolsExt_path():
        NVTOOLEXT_HOME = _dl_flags.getenv('NVTOOLSEXT_PATH', 'C:\\Program Files\\NVIDIA Corporation\\NvToolsExt')

        if _dl_flags.path.exists(NVTOOLEXT_HOME):
            return NVTOOLEXT_HOME + '\\bin\\x64\\'
        else:
            return ''

    py_dll_path = _dl_flags.path.join(_dl_flags.path.dirname(sys.executable), 'Library\\bin')
    th_dll_path = _dl_flags.path.dirname(__file__) + '\\lib\\'

    dll_paths = [th_dll_path, py_dll_path, get_nvToolsExt_path(), _dl_flags.environ['PATH']]

    # then add the path to env
    _dl_flags.environ['PATH'] = ';'.join(dll_paths)

else:
    # first check if the os package has the required flags
    if not hasattr(_dl_flags, 'RTLD_GLOBAL') or not hasattr(_dl_flags, 'RTLD_LAZY'):
        try:
            # next try if DLFCN exists
            import DLFCN as _dl_flags
        except ImportError:
            # as a last attempt, use compile-time constants
            import torch._dl as _dl_flags

    old_flags = sys.getdlopenflags()
    sys.setdlopenflags(_dl_flags.RTLD_GLOBAL | _dl_flags.RTLD_LAZY)

del _dl_flags

try:
    import torch._nvrtc
except ImportError:
    pass

from torch._C import *

__all__ += [name for name in dir(_C)
            if name[0] != '_' and
            not name.endswith('Base')]

if platform.system() != 'Windows':
    sys.setdlopenflags(old_flags)
    del old_flags

################################################################################
# Define basic utilities
################################################################################


def typename(o):
    if isinstance(o, torch.Tensor):
        return o.type()

    module = ''
    class_name = ''
    if hasattr(o, '__module__') and o.__module__ != 'builtins' \
            and o.__module__ != '__builtin__' and o.__module__ is not None:
        module = o.__module__ + '.'

    if hasattr(o, '__qualname__'):
        class_name = o.__qualname__
    elif hasattr(o, '__name__'):
        class_name = o.__name__
    else:
        class_name = o.__class__.__name__

    return module + class_name


[docs]def is_tensor(obj): r"""Returns True if `obj` is a PyTorch tensor. Args: obj (Object): Object to test """ return isinstance(obj, torch.Tensor)
[docs]def is_storage(obj): r"""Returns True if `obj` is a PyTorch storage object. Args: obj (Object): Object to test """ return type(obj) in _storage_classes
[docs]def set_default_tensor_type(t): r"""Sets the default ``torch.Tensor`` type to floating point tensor type :attr:`t`. This type will also be used as default floating point type for type inference in :func:`torch.tensor`. The default floating point tensor type is initially ``torch.FloatTensor``. Args: t (type or string): the floating point tensor type or its name Example:: >>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_tensor_type(torch.DoubleTensor) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 """ if isinstance(t, _string_classes): t = _import_dotted_name(t) _C._set_default_tensor_type(t)
[docs]def set_default_dtype(d): r"""Sets the default floating point dtype to :attr:`d`. This type will be used as default floating point type for type inference in :func:`torch.tensor`. The default floating point dtype is initially ``torch.float32``. Args: d (:class:`torch.dtype`): the floating point dtype to make the default Example:: >>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_dtype(torch.float64) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 """ _C._set_default_dtype(d)
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed from .serialization import save, load from ._tensor_str import set_printoptions ################################################################################ # Define Storage and Tensor classes ################################################################################ from .tensor import Tensor from .storage import _StorageBase class DoubleStorage(_C.DoubleStorageBase, _StorageBase): pass
[docs]class FloatStorage(_C.FloatStorageBase, _StorageBase): pass
class HalfStorage(_C.HalfStorageBase, _StorageBase): pass class LongStorage(_C.LongStorageBase, _StorageBase): pass class IntStorage(_C.IntStorageBase, _StorageBase): pass class ShortStorage(_C.ShortStorageBase, _StorageBase): pass class CharStorage(_C.CharStorageBase, _StorageBase): pass class ByteStorage(_C.ByteStorageBase, _StorageBase): pass _storage_classes = { DoubleStorage, FloatStorage, LongStorage, IntStorage, ShortStorage, CharStorage, ByteStorage, HalfStorage } # The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings() _tensor_classes = set() ################################################################################ # Initialize extension ################################################################################ def manager_path(): if platform.system() == 'Windows': return b"" path = get_file_path('torch', 'lib', 'torch_shm_manager') prepare_multiprocessing_environment(get_file_path('torch')) if not os.path.exists(path): raise RuntimeError("Unable to find torch_shm_manager at " + path) return path.encode('utf-8') # Shared memory manager needs to know the exact location of manager executable _C._initExtension(manager_path()) del manager_path for name in dir(_C._VariableFunctions): if name.startswith('__'): continue globals()[name] = getattr(_C._VariableFunctions, name) ################################################################################ # Import interface functions defined in Python ################################################################################ # needs to be after the above ATen bindings so we can overwrite from Python side from .functional import * ################################################################################ # Remove unnecessary members ################################################################################ del DoubleStorageBase del FloatStorageBase del LongStorageBase del IntStorageBase del ShortStorageBase del CharStorageBase del ByteStorageBase ################################################################################ # Import most common subpackages ################################################################################ import torch.cuda import torch.autograd from torch.autograd import no_grad, enable_grad, set_grad_enabled import torch.nn import torch.optim import torch.multiprocessing import torch.sparse import torch.utils.backcompat import torch.onnx import torch.jit import torch.random import torch.distributions import torch.testing import torch.backends.cuda import torch.backends.mkl _C._init_names(list(torch._storage_classes)) # attach docstrings to torch and tensor functions from . import _torch_docs, _tensor_docs, _storage_docs del _torch_docs, _tensor_docs, _storage_docs
[docs]def compiled_with_cxx11_abi(): r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1""" return _C._GLIBCXX_USE_CXX11_ABI
# Import the ops "namespace" from torch._ops import ops

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources