Extended maintenance of Ruby 1.9.3 ended on February 23, 2015. Read more
Arrays are ordered, integer-indexed collections of any object. Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array—that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.
Returns a new array populated with the given objects.
Array.[]( 1, 'a', /^A/ ) Array[ 1, 'a', /^A/ ] [ 1, 'a', /^A/ ]
static VALUE rb_ary_s_create(int argc, VALUE *argv, VALUE klass) { VALUE ary = ary_new(klass, argc); if (argc > 0 && argv) { MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); ARY_SET_LEN(ary, argc); } return ary; }
Returns a new array.
In the first form, if no arguments are sent, the new array will be empty.
When a size
and an optional obj
are sent, an
array is created with size
copies of obj
. Take
notice that all elements will reference the same object obj
.
The second form creates a copy of the array passed as a parameter (the array is generated by calling #to_ary on the parameter).
first_array = ["Matz", "Guido"] second_array = Array.new(first_array) #=> ["Matz", "Guido"] first_array.equal? second_array #=> false
In the last form, an array of the given size is created. Each element in this array is created by passing the element’s index to the given block and storing the return value.
Array.new(3){ |index| index ** 2 } # => [0, 1, 4]
When sending the second parameter, the same object will be used as the value for all the array elements:
a = Array.new(2, Hash.new) # => [{}, {}] a[0]['cat'] = 'feline' a # => [{"cat"=>"feline"}, {"cat"=>"feline"}] a[1]['cat'] = 'Felix' a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]
Since all the Array elements store the same hash, changes to one of them will affect them all.
If multiple copies are what you want, you should use the block version which uses the result of that block each time an element of the array needs to be initialized:
a = Array.new(2) { Hash.new } a[0]['cat'] = 'feline' a # => [{"cat"=>"feline"}, {}]
static VALUE rb_ary_initialize(int argc, VALUE *argv, VALUE ary) { long len; VALUE size, val; rb_ary_modify(ary); if (argc == 0) { if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) { xfree(RARRAY_PTR(ary)); } rb_ary_unshare_safe(ary); FL_SET_EMBED(ary); ARY_SET_EMBED_LEN(ary, 0); if (rb_block_given_p()) { rb_warning("given block not used"); } return ary; } rb_scan_args(argc, argv, "02", &size, &val); if (argc == 1 && !FIXNUM_P(size)) { val = rb_check_array_type(size); if (!NIL_P(val)) { rb_ary_replace(ary, val); return ary; } } len = NUM2LONG(size); if (len < 0) { rb_raise(rb_eArgError, "negative array size"); } if (len > ARY_MAX_SIZE) { rb_raise(rb_eArgError, "array size too big"); } rb_ary_modify(ary); ary_resize_capa(ary, len); if (rb_block_given_p()) { long i; if (argc == 2) { rb_warn("block supersedes default value argument"); } for (i=0; i<len; i++) { rb_ary_store(ary, i, rb_yield(LONG2NUM(i))); ARY_SET_LEN(ary, i + 1); } } else { memfill(RARRAY_PTR(ary), len, val); ARY_SET_LEN(ary, len); } return ary; }
Tries to convert obj
into an array, using to_ary
method. Returns the converted array or nil
if
obj
cannot be converted for any reason. This method can be
used to check if an argument is an array.
Array.try_convert([1]) #=> [1] Array.try_convert("1") #=> nil if tmp = Array.try_convert(arg) # the argument is an array elsif tmp = String.try_convert(arg) # the argument is a string end
static VALUE rb_ary_s_try_convert(VALUE dummy, VALUE ary) { return rb_check_array_type(ary); }
Set Intersection—Returns a new array containing elements common to the two arrays, with no duplicates.
[ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
static VALUE rb_ary_and(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v; st_data_t vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ? RARRAY_LEN(ary1) : RARRAY_LEN(ary2)); hash = ary_make_hash(ary2); if (RHASH_EMPTY_P(hash)) return ary3; for (i=0; i<RARRAY_LEN(ary1); i++) { vv = (st_data_t)(v = rb_ary_elt(ary1, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(ary3, v); } } ary_recycle_hash(hash); return ary3; }
Repetition—With a String argument, equivalent to
self.join(str). Otherwise, returns a new array built by concatenating the
int copies of self
.
[ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] [ 1, 2, 3 ] * "," #=> "1,2,3"
static VALUE rb_ary_times(VALUE ary, VALUE times) { VALUE ary2, tmp, *ptr, *ptr2; long t, len; tmp = rb_check_string_type(times); if (!NIL_P(tmp)) { return rb_ary_join(ary, tmp); } len = NUM2LONG(times); if (len == 0) { ary2 = ary_new(rb_obj_class(ary), 0); goto out; } if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) { rb_raise(rb_eArgError, "argument too big"); } len *= RARRAY_LEN(ary); ary2 = ary_new(rb_obj_class(ary), len); ARY_SET_LEN(ary2, len); ptr = RARRAY_PTR(ary); ptr2 = RARRAY_PTR(ary2); t = RARRAY_LEN(ary); if (0 < t) { MEMCPY(ptr2, ptr, VALUE, t); while (t <= len/2) { MEMCPY(ptr2+t, ptr2, VALUE, t); t *= 2; } if (t < len) { MEMCPY(ptr2+t, ptr2, VALUE, len-t); } } out: OBJ_INFECT(ary2, ary); return ary2; }
Concatenation—Returns a new array built by concatenating the two arrays together to produce a third array.
[ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
VALUE rb_ary_plus(VALUE x, VALUE y) { VALUE z; long len; y = to_ary(y); len = RARRAY_LEN(x) + RARRAY_LEN(y); z = rb_ary_new2(len); MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x)); MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y)); ARY_SET_LEN(z, len); return z; }
Array Difference---Returns a new array that is a copy of the original array, removing any items that also appear in other_ary. (If you need set-like behavior, see the library class Set.)
[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
static VALUE rb_ary_diff(VALUE ary1, VALUE ary2) { VALUE ary3; volatile VALUE hash; long i; hash = ary_make_hash(to_ary(ary2)); ary3 = rb_ary_new(); for (i=0; i<RARRAY_LEN(ary1); i++) { if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue; rb_ary_push(ary3, rb_ary_elt(ary1, i)); } ary_recycle_hash(hash); return ary3; }
Append—Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.
[ 1, 2 ] << "c" << "d" << [ 3, 4 ] #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
VALUE rb_ary_push(VALUE ary, VALUE item) { rb_ary_modify(ary); return rb_ary_push_1(ary, item); }
Comparison—Returns an integer (-1, 0, or +1) if this array is less than,
equal to, or greater than other_ary. Each object in each array is
compared (using <=>). If any value isn’t equal, then that inequality
is the return value. If all the values found are equal, then the return is
based on a comparison of the array lengths. Thus, two arrays are “equal”
according to Array#<=>
if and only if they have the same
length and the value of each element is equal to the value of the
corresponding element in the other array.
[ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
VALUE rb_ary_cmp(VALUE ary1, VALUE ary2) { long len; VALUE v; ary2 = rb_check_array_type(ary2); if (NIL_P(ary2)) return Qnil; if (ary1 == ary2) return INT2FIX(0); v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2); if (v != Qundef) return v; len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2); if (len == 0) return INT2FIX(0); if (len > 0) return INT2FIX(1); return INT2FIX(-1); }
Equality—Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object.==) the corresponding element in the other array.
[ "a", "c" ] == [ "a", "c", 7 ] #=> false [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
static VALUE rb_ary_equal(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) { if (!rb_respond_to(ary2, rb_intern("to_ary"))) { return Qfalse; } return rb_equal(ary2, ary1); } if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2); }
Element Reference—Returns the element at index, or returns a
subarray starting at start and continuing for length
elements, or returns a subarray specified by range. Negative
indices count backward from the end of the array (-1 is the last element).
Returns nil
if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ] a[2] + a[0] + a[1] #=> "cab" a[6] #=> nil a[1, 2] #=> [ "b", "c" ] a[1..3] #=> [ "b", "c", "d" ] a[4..7] #=> [ "e" ] a[6..10] #=> nil a[-3, 3] #=> [ "c", "d", "e" ] # special cases a[5] #=> nil a[5, 1] #=> [] a[5..10] #=> []
VALUE rb_ary_aref(int argc, VALUE *argv, VALUE ary) { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY_LEN(ary); } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); }
Element Assignment—Sets the element at index, or replaces a
subarray starting at start and continuing for length
elements, or replaces a subarray specified by range. If indices
are greater than the current capacity of the array, the array grows
automatically. A negative indices will count backward from the end of the
array. Inserts elements if length is zero. An
IndexError
is raised if a negative index points past the
beginning of the array. See also Array#push
, and
Array#unshift
.
a = Array.new a[4] = "4"; #=> [nil, nil, nil, nil, "4"] a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] a[0, 2] = "?" #=> ["?", 2, nil, "4"] a[0..2] = "A" #=> ["A", "4"] a[-1] = "Z" #=> ["A", "Z"] a[1..-1] = nil #=> ["A", nil] a[1..-1] = [] #=> ["A"]
static VALUE rb_ary_aset(int argc, VALUE *argv, VALUE ary) { long offset, beg, len; if (argc == 3) { rb_ary_modify_check(ary); beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); rb_ary_splice(ary, beg, len, argv[2]); return argv[2]; } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc); } rb_ary_modify_check(ary); if (FIXNUM_P(argv[0])) { offset = FIX2LONG(argv[0]); goto fixnum; } if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) { /* check if idx is Range */ rb_ary_splice(ary, beg, len, argv[1]); return argv[1]; } offset = NUM2LONG(argv[0]); fixnum: rb_ary_store(ary, offset, argv[1]); return argv[1]; }
Searches through an array whose elements are also arrays comparing
obj with the first element of each contained array using obj.==.
Returns the first contained array that matches (that is, the first
associated array), or nil
if no match is found. See also
Array#rassoc
.
s1 = [ "colors", "red", "blue", "green" ] s2 = [ "letters", "a", "b", "c" ] s3 = "foo" a = [ s1, s2, s3 ] a.assoc("letters") #=> [ "letters", "a", "b", "c" ] a.assoc("foo") #=> nil
VALUE rb_ary_assoc(VALUE ary, VALUE key) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = rb_check_array_type(RARRAY_PTR(ary)[i]); if (!NIL_P(v) && RARRAY_LEN(v) > 0 && rb_equal(RARRAY_PTR(v)[0], key)) return v; } return Qnil; }
Returns the element at index. A negative index counts from the end
of self
. Returns nil
if the index is out of
range. See also Array#[]
.
a = [ "a", "b", "c", "d", "e" ] a.at(0) #=> "a" a.at(-1) #=> "e"
static VALUE rb_ary_at(VALUE ary, VALUE pos) { return rb_ary_entry(ary, NUM2LONG(pos)); }
Removes all elements from self
.
a = [ "a", "b", "c", "d", "e" ] a.clear #=> [ ]
VALUE rb_ary_clear(VALUE ary) { rb_ary_modify_check(ary); ARY_SET_LEN(ary, 0); if (ARY_SHARED_P(ary)) { if (!ARY_EMBED_P(ary)) { rb_ary_unshare(ary); FL_SET_EMBED(ary); } } else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2); } return ary; }
Invokes block once for each element of self
. Creates
a new array containing the values returned by the block. See also
Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] a #=> ["a", "b", "c", "d"]
static VALUE rb_ary_collect(VALUE ary) { long i; VALUE collect; RETURN_ENUMERATOR(ary, 0, 0); collect = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i])); } return collect; }
Invokes the block once for each element of self
, replacing the
element with the value returned by block. See also
Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.collect! {|x| x + "!" } a #=> [ "a!", "b!", "c!", "d!" ]
static VALUE rb_ary_collect_bang(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i])); } return ary; }
When invoked with a block, yields all combinations of length n of elements from ary and then returns ary itself. The implementation makes no guarantees about the order in which the combinations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2, 3, 4] a.combination(1).to_a #=> [[1],[2],[3],[4]] a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] a.combination(4).to_a #=> [[1,2,3,4]] a.combination(0).to_a #=> [[]] # one combination of length 0 a.combination(5).to_a #=> [] # no combinations of length 5
static VALUE rb_ary_combination(VALUE ary, VALUE num) { long n, i, len; n = NUM2LONG(num); RETURN_ENUMERATOR(ary, 1, &num); len = RARRAY_LEN(ary); if (n < 0 || len < n) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { volatile VALUE t0 = tmpbuf(n+1, sizeof(long)); long *stack = (long*)RSTRING_PTR(t0); volatile VALUE cc = tmpary(n); VALUE *chosen = RARRAY_PTR(cc); long lev = 0; MEMZERO(stack, long, n); stack[0] = -1; for (;;) { chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]]; for (lev++; lev < n; lev++) { chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1]; } rb_yield(rb_ary_new4(n, chosen)); if (RBASIC(t0)->klass) { rb_raise(rb_eRuntimeError, "combination reentered"); } do { if (lev == 0) goto done; stack[lev--]++; } while (stack[lev+1]+n == len+lev+1); } done: tmpbuf_discard(t0); tmpary_discard(cc); } return ary; }
Returns a copy of self
with all nil
elements
removed.
[ "a", nil, "b", nil, "c", nil ].compact #=> [ "a", "b", "c" ]
static VALUE rb_ary_compact(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_compact_bang(ary); return ary; }
Removes nil
elements from the array. Returns nil
if no changes were made, otherwise returns ary.
[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] [ "a", "b", "c" ].compact! #=> nil
static VALUE rb_ary_compact_bang(VALUE ary) { VALUE *p, *t, *end; long n; rb_ary_modify(ary); p = t = RARRAY_PTR(ary); end = p + RARRAY_LEN(ary); while (t < end) { if (NIL_P(*t)) t++; else *p++ = *t++; } n = p - RARRAY_PTR(ary); if (RARRAY_LEN(ary) == n) { return Qnil; } ARY_SET_LEN(ary, n); if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { ary_resize_capa(ary, n * 2); } return ary; }
Appends the elements of other_ary to self
.
[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
VALUE rb_ary_concat(VALUE x, VALUE y) { rb_ary_modify_check(x); y = to_ary(y); if (RARRAY_LEN(y) > 0) { rb_ary_splice(x, RARRAY_LEN(x), 0, y); } return x; }
Returns the number of elements. If an argument is given, counts the number of elements which equals to obj. If a block is given, counts the number of elements yielding a true value.
ary = [1, 2, 4, 2] ary.count #=> 4 ary.count(2) #=> 2 ary.count{|x|x%2==0} #=> 3
static VALUE rb_ary_count(int argc, VALUE *argv, VALUE ary) { long i, n = 0; if (argc == 0) { VALUE v; if (!rb_block_given_p()) return LONG2NUM(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { v = RARRAY_PTR(ary)[i]; if (RTEST(rb_yield(v))) n++; } } else { VALUE obj; rb_scan_args(argc, argv, "1", &obj); if (rb_block_given_p()) { rb_warn("given block not used"); } for (i = 0; i < RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], obj)) n++; } } return LONG2NUM(n); }
Calls block for each element repeatedly n times or
forever if none or nil
is given. If a non-positive number is
given or the array is empty, does nothing. Returns nil
if the
loop has finished without getting interrupted.
If no block is given, an enumerator is returned instead.
a = ["a", "b", "c"] a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever. a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
static VALUE rb_ary_cycle(int argc, VALUE *argv, VALUE ary) { long n, i; VALUE nv = Qnil; rb_scan_args(argc, argv, "01", &nv); RETURN_ENUMERATOR(ary, argc, argv); if (NIL_P(nv)) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) { for (i=0; i<RARRAY_LEN(ary); i++) { rb_yield(RARRAY_PTR(ary)[i]); } } return Qnil; }
Deletes items from self
that are equal to obj. If any
items are found, returns obj. If the item is not found, returns
nil
. If the optional code block is given, returns the result
of block if the item is not found. (To remove nil
elements and get an informative return value, use compact!)
a = [ "a", "b", "b", "b", "c" ] a.delete("b") #=> "b" a #=> ["a", "c"] a.delete("z") #=> nil a.delete("z") { "not found" } #=> "not found"
VALUE rb_ary_delete(VALUE ary, VALUE item) { VALUE v = item; long i1, i2; for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE e = RARRAY_PTR(ary)[i1]; if (rb_equal(e, item)) { v = e; continue; } if (i1 != i2) { rb_ary_store(ary, i2, e); } i2++; } if (RARRAY_LEN(ary) == i2) { if (rb_block_given_p()) { return rb_yield(item); } return Qnil; } rb_ary_modify(ary); if (RARRAY_LEN(ary) > i2) { ARY_SET_LEN(ary, i2); if (i2 * 2 < ARY_CAPA(ary) && ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { ary_resize_capa(ary, i2*2); } } return v; }
Deletes the element at the specified index, returning that element, or
nil
if the index is out of range. See also
Array#slice!
.
a = %w( ant bat cat dog ) a.delete_at(2) #=> "cat" a #=> ["ant", "bat", "dog"] a.delete_at(99) #=> nil
static VALUE rb_ary_delete_at_m(VALUE ary, VALUE pos) { return rb_ary_delete_at(ary, NUM2LONG(pos)); }
Deletes every element of self
for which block
evaluates to true. The array is changed instantly every time the block is
called and not after the iteration is over. See also
Array#reject!
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c" ] a.delete_if {|x| x >= "b" } #=> ["a"]
static VALUE rb_ary_delete_if(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ary_reject_bang(ary); return ary; }
Drops first n elements from ary
and returns the rest of the
elements in an array.
a = [1, 2, 3, 4, 5, 0] a.drop(3) #=> [4, 5, 0]
static VALUE rb_ary_drop(VALUE ary, VALUE n) { VALUE result; long pos = NUM2LONG(n); if (pos < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary)); if (result == Qnil) result = rb_ary_new(); return result; }
Drops elements up to, but not including, the first element for which the
block returns nil
or false
and returns an array
containing the remaining elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0] a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0]
static VALUE rb_ary_drop_while(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i = 0; i < RARRAY_LEN(ary); i++) { if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break; } return rb_ary_drop(ary, LONG2FIX(i)); }
Calls block once for each element in self
, passing
that element as a parameter.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c" ] a.each {|x| print x, " -- " }
produces:
a -- b -- c --
VALUE rb_ary_each(VALUE array) { long i; volatile VALUE ary = array; RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i<RARRAY_LEN(ary); i++) { rb_yield(RARRAY_PTR(ary)[i]); } return ary; }
Same as Array#each
, but passes the index of the element
instead of the element itself.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c" ] a.each_index {|x| print x, " -- " }
produces:
0 -- 1 -- 2 --
static VALUE rb_ary_each_index(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i<RARRAY_LEN(ary); i++) { rb_yield(LONG2NUM(i)); } return ary; }
Returns true
if self
contains no elements.
[].empty? #=> true
static VALUE rb_ary_empty_p(VALUE ary) { if (RARRAY_LEN(ary) == 0) return Qtrue; return Qfalse; }
Returns true
if self
and other are the
same object, or are both arrays with the same content.
static VALUE rb_ary_eql(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) return Qfalse; if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2); }
Tries to return the element at position index. If the index lies
outside the array, the first form throws an IndexError
exception, the second form returns default, and the third form
returns the value of invoking the block, passing in the index. Negative
values of index count from the end of the array.
a = [ 11, 22, 33, 44 ] a.fetch(1) #=> 22 a.fetch(-1) #=> 44 a.fetch(4, 'cat') #=> "cat" a.fetch(4) { |i| i*i } #=> 16
static VALUE rb_ary_fetch(int argc, VALUE *argv, VALUE ary) { VALUE pos, ifnone; long block_given; long idx; rb_scan_args(argc, argv, "11", &pos, &ifnone); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } idx = NUM2LONG(pos); if (idx < 0) { idx += RARRAY_LEN(ary); } if (idx < 0 || RARRAY_LEN(ary) <= idx) { if (block_given) return rb_yield(pos); if (argc == 1) { rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld", idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary)); } return ifnone; } return RARRAY_PTR(ary)[idx]; }
The first three forms set the selected elements of self
(which
may be the entire array) to obj. A start of
nil
is equivalent to zero. A length of
nil
is equivalent to self.length. The last three
forms fill the array with the value of the block. The block is passed the
absolute index of each element to be filled. Negative values of
start count from the end of the array.
a = [ "a", "b", "c", "d" ] a.fill("x") #=> ["x", "x", "x", "x"] a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] a.fill("y", 0..1) #=> ["y", "y", "z", "z"] a.fill {|i| i*i} #=> [0, 1, 4, 9] a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
static VALUE rb_ary_fill(int argc, VALUE *argv, VALUE ary) { VALUE item, arg1, arg2; long beg = 0, end = 0, len = 0; VALUE *p, *pend; int block_p = FALSE; if (rb_block_given_p()) { block_p = TRUE; rb_scan_args(argc, argv, "02", &arg1, &arg2); argc += 1; /* hackish */ } else { rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); } switch (argc) { case 1: beg = 0; len = RARRAY_LEN(ary); break; case 2: if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) { break; } /* fall through */ case 3: beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); if (beg < 0) { beg = RARRAY_LEN(ary) + beg; if (beg < 0) beg = 0; } len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2); break; } rb_ary_modify(ary); if (len < 0) { return ary; } if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) { rb_raise(rb_eArgError, "argument too big"); } end = beg + len; if (RARRAY_LEN(ary) < end) { if (end >= ARY_CAPA(ary)) { ary_resize_capa(ary, end); } rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary)); ARY_SET_LEN(ary, end); } if (block_p) { VALUE v; long i; for (i=beg; i<end; i++) { v = rb_yield(LONG2NUM(i)); if (i>=RARRAY_LEN(ary)) break; RARRAY_PTR(ary)[i] = v; } } else { p = RARRAY_PTR(ary) + beg; pend = p + len; while (p < pend) { *p++ = item; } } return ary; }
Returns the index of the first object in self
such that the
object is ==
to obj. If a block is given instead of
an argument, returns index of first object for which block is
true. Returns nil
if no match is found. See also
Array#rindex
.
If neither block nor argument is given, an enumerator is returned instead.
a = [ "a", "b", "c" ] a.index("b") #=> 1 a.index("z") #=> nil a.index{|x|x=="b"} #=> 1
This is an alias of #find_index
.
static VALUE rb_ary_index(int argc, VALUE *argv, VALUE ary) { VALUE val; long i; if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i<RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { return LONG2NUM(i); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); for (i=0; i<RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); } return Qnil; }
Returns the first element, or the first n
elements, of the
array. If the array is empty, the first form returns nil
, and
the second form returns an empty array.
a = [ "q", "r", "s", "t" ] a.first #=> "q" a.first(2) #=> ["q", "r"]
static VALUE rb_ary_first(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[0]; } else { return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); } }
Returns a new array that is a one-dimensional flattening of this array (recursively). That is, for every element that is an array, extract its elements into the new array. If the optional level argument determines the level of recursion to flatten.
s = [ 1, 2, 3 ] #=> [1, 2, 3] t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a = [ 1, 2, [3, [4, 5] ] ] a.flatten(1) #=> [1, 2, 3, [4, 5]]
static VALUE rb_ary_flatten(int argc, VALUE *argv, VALUE ary) { int mod = 0, level = -1; VALUE result, lv; rb_scan_args(argc, argv, "01", &lv); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return ary_make_shared_copy(ary); result = flatten(ary, level, &mod); OBJ_INFECT(result, ary); return result; }
Flattens self
in place. Returns nil
if no
modifications were made (i.e., ary contains no subarrays.) If the
optional level argument determines the level of recursion to
flatten.
a = [ 1, 2, [3, [4, 5] ] ] a.flatten! #=> [1, 2, 3, 4, 5] a.flatten! #=> nil a #=> [1, 2, 3, 4, 5] a = [ 1, 2, [3, [4, 5] ] ] a.flatten!(1) #=> [1, 2, 3, [4, 5]]
static VALUE rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary) { int mod = 0, level = -1; VALUE result, lv; rb_scan_args(argc, argv, "01", &lv); rb_ary_modify_check(ary); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return Qnil; result = flatten(ary, level, &mod); if (mod == 0) { ary_discard(result); return Qnil; } if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result); rb_ary_replace(ary, result); if (mod) ARY_SET_EMBED_LEN(result, 0); return ary; }
Return true
if this array is frozen (or temporarily frozen
while being sorted).
static VALUE rb_ary_frozen_p(VALUE ary) { if (OBJ_FROZEN(ary)) return Qtrue; return Qfalse; }
Compute a hash-code for this array. Two arrays with the same content will
have the same hash code (and will compare using eql?
).
static VALUE rb_ary_hash(VALUE ary) { return rb_exec_recursive_outer(recursive_hash, ary, 0); }
Returns true
if the given object is present in
self
(that is, if any object ==
anObject), false
otherwise.
a = [ "a", "b", "c" ] a.include?("b") #=> true a.include?("z") #=> false
VALUE rb_ary_includes(VALUE ary, VALUE item) { long i; for (i=0; i<RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], item)) { return Qtrue; } } return Qfalse; }
Returns the index of the first object in self
such that the
object is ==
to obj. If a block is given instead of
an argument, returns index of first object for which block is
true. Returns nil
if no match is found. See also
Array#rindex
.
If neither block nor argument is given, an enumerator is returned instead.
a = [ "a", "b", "c" ] a.index("b") #=> 1 a.index("z") #=> nil a.index{|x|x=="b"} #=> 1
This is an alias of #find_index
.
static VALUE rb_ary_index(int argc, VALUE *argv, VALUE ary) { VALUE val; long i; if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i<RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { return LONG2NUM(i); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); for (i=0; i<RARRAY_LEN(ary); i++) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); } return Qnil; }
Replaces the contents of self
with the contents of
other_ary, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ] a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] a #=> ["x", "y", "z"]
VALUE rb_ary_replace(VALUE copy, VALUE orig) { rb_ary_modify_check(copy); orig = to_ary(orig); if (copy == orig) return copy; if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { VALUE *ptr; VALUE shared = 0; if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else if (ARY_SHARED_P(copy)) { shared = ARY_SHARED(copy); FL_UNSET_SHARED(copy); } FL_SET_EMBED(copy); ptr = RARRAY_PTR(orig); MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig)); if (shared) { rb_ary_decrement_share(shared); } ARY_SET_LEN(copy, RARRAY_LEN(orig)); } else { VALUE shared = ary_make_shared(orig); if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else { rb_ary_unshare_safe(copy); } FL_UNSET_EMBED(copy); ARY_SET_PTR(copy, RARRAY_PTR(orig)); ARY_SET_LEN(copy, RARRAY_LEN(orig)); rb_ary_set_shared(copy, shared); } return copy; }
Inserts the given values before the element with the given index (which may be negative).
a = %w{ a b c d } a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
static VALUE rb_ary_insert(int argc, VALUE *argv, VALUE ary) { long pos; if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (at least 1)"); } rb_ary_modify_check(ary); if (argc == 1) return ary; pos = NUM2LONG(argv[0]); if (pos == -1) { pos = RARRAY_LEN(ary); } if (pos < 0) { pos++; } rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); return ary; }
Creates a string representation of self
.
static VALUE rb_ary_inspect(VALUE ary) { if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]"); return rb_exec_recursive(inspect_ary, ary, 0); }
Returns a string created by converting each element of the array to a string, separated by sep.
[ "a", "b", "c" ].join #=> "abc" [ "a", "b", "c" ].join("-") #=> "a-b-c"
static VALUE rb_ary_join_m(int argc, VALUE *argv, VALUE ary) { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(ary, sep); }
Deletes every element of self
for which block
evaluates to false. See also Array#select!
If no block is given, an enumerator is returned instead.
a = %w{ a b c d e f } a.keep_if {|v| v =~ /[aeiou]/} #=> ["a", "e"]
static VALUE rb_ary_keep_if(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); rb_ary_select_bang(ary); return ary; }
Returns the last element(s) of self
. If the array is empty,
the first form returns nil
.
a = [ "w", "x", "y", "z" ] a.last #=> "z" a.last(2) #=> ["y", "z"]
VALUE rb_ary_last(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1]; } else { return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); } }
Returns the number of elements in self
. May be zero.
[ 1, 2, 3, 4, 5 ].length #=> 5
static VALUE rb_ary_length(VALUE ary) { long len = RARRAY_LEN(ary); return LONG2NUM(len); }
Invokes block once for each element of self
. Creates
a new array containing the values returned by the block. See also
Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] a #=> ["a", "b", "c", "d"]
static VALUE rb_ary_collect(VALUE ary) { long i; VALUE collect; RETURN_ENUMERATOR(ary, 0, 0); collect = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i])); } return collect; }
Invokes the block once for each element of self
, replacing the
element with the value returned by block. See also
Enumerable#collect
.
If no block is given, an enumerator is returned instead.
a = [ "a", "b", "c", "d" ] a.collect! {|x| x + "!" } a #=> [ "a!", "b!", "c!", "d!" ]
static VALUE rb_ary_collect_bang(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i])); } return ary; }
Packs the contents of arr into a binary sequence according to the
directives in aTemplateString (see the table below) Directives
“A,” “a,” and “Z” may be followed by a count, which gives the width of the
resulting field. The remaining directives also may take a count, indicating
the number of array elements to convert. If the count is an asterisk
(“*
”), all remaining array elements will be converted. Any of
the directives “sSiIlL
” may be followed by an underscore
(“_
”) or exclamation mark (“!
”) to use the
underlying platform’s native size for the specified type; otherwise, they
use a platform-independent size. Spaces are ignored in the template string.
See also String#unpack
.
a = [ "a", "b", "c" ] n = [ 65, 66, 67 ] a.pack("A3A3A3") #=> "a b c " a.pack("a3a3a3") #=> "a\000\000b\000\000c\000\000" n.pack("ccc") #=> "ABC"
Directives for pack
.
Integer | Array | Directive | Element | Meaning --------------------------------------------------------------------------- C | Integer | 8-bit unsigned (unsigned char) S | Integer | 16-bit unsigned, native endian (uint16_t) L | Integer | 32-bit unsigned, native endian (uint32_t) Q | Integer | 64-bit unsigned, native endian (uint64_t) | | c | Integer | 8-bit signed (signed char) s | Integer | 16-bit signed, native endian (int16_t) l | Integer | 32-bit signed, native endian (int32_t) q | Integer | 64-bit signed, native endian (int64_t) | | S_, S! | Integer | unsigned short, native endian I, I_, I! | Integer | unsigned int, native endian L_, L! | Integer | unsigned long, native endian | | s_, s! | Integer | signed short, native endian i, i_, i! | Integer | signed int, native endian l_, l! | Integer | signed long, native endian | | S> L> Q> | Integer | same as the directives without ">" except s> l> q> | | big endian S!> I!> | | (available since Ruby 1.9.3) L!> | | "S>" is same as "n" s!> i!> | | "L>" is same as "N" l!> | | | | S< L< Q< | Integer | same as the directives without "<" except s< l< q< | | little endian S!< I!< | | (available since Ruby 1.9.3) L!< | | "S<" is same as "v" s!< i!< | | "L<" is same as "V" l!< | | | | n | Integer | 16-bit unsigned, network (big-endian) byte order N | Integer | 32-bit unsigned, network (big-endian) byte order v | Integer | 16-bit unsigned, VAX (little-endian) byte order V | Integer | 32-bit unsigned, VAX (little-endian) byte order | | U | Integer | UTF-8 character w | Integer | BER-compressed integer Float | | Directive | | Meaning --------------------------------------------------------------------------- D, d | Float | double-precision, native format F, f | Float | single-precision, native format E | Float | double-precision, little-endian byte order e | Float | single-precision, little-endian byte order G | Float | double-precision, network (big-endian) byte order g | Float | single-precision, network (big-endian) byte order String | | Directive | | Meaning --------------------------------------------------------------------------- A | String | arbitrary binary string (space padded, count is width) a | String | arbitrary binary string (null padded, count is width) Z | String | same as ``a'', except that null is added with * B | String | bit string (MSB first) b | String | bit string (LSB first) H | String | hex string (high nibble first) h | String | hex string (low nibble first) u | String | UU-encoded string M | String | quoted printable, MIME encoding (see RFC2045) m | String | base64 encoded string (see RFC 2045, count is width) | | (if count is 0, no line feed are added, see RFC 4648) P | String | pointer to a structure (fixed-length string) p | String | pointer to a null-terminated string Misc. | | Directive | | Meaning --------------------------------------------------------------------------- @ | --- | moves to absolute position X | --- | back up a byte x | --- | null byte
static VALUE pack_pack(VALUE ary, VALUE fmt) { static const char nul10[] = "\0\0\0\0\0\0\0\0\0\0"; static const char spc10[] = " "; const char *p, *pend; VALUE res, from, associates = 0; char type; long items, len, idx, plen; const char *ptr; int enc_info = 1; /* 0 - BINARY, 1 - US-ASCII, 2 - UTF-8 */ #ifdef NATINT_PACK int natint; /* native integer */ #endif int signed_p, integer_size, bigendian_p; StringValue(fmt); p = RSTRING_PTR(fmt); pend = p + RSTRING_LEN(fmt); res = rb_str_buf_new(0); items = RARRAY_LEN(ary); idx = 0; #define TOO_FEW (rb_raise(rb_eArgError, toofew), 0) #define THISFROM (items > 0 ? RARRAY_PTR(ary)[idx] : TOO_FEW) #define NEXTFROM (items-- > 0 ? RARRAY_PTR(ary)[idx++] : TOO_FEW) while (p < pend) { int explicit_endian = 0; if (RSTRING_PTR(fmt) + RSTRING_LEN(fmt) != pend) { rb_raise(rb_eRuntimeError, "format string modified"); } type = *p++; /* get data type */ #ifdef NATINT_PACK natint = 0; #endif if (ISSPACE(type)) continue; if (type == '#') { while ((p < pend) && (*p != '\n')) { p++; } continue; } { static const char natstr[] = "sSiIlL"; static const char endstr[] = "sSiIlLqQ"; modifiers: switch (*p) { case '_': case '!': if (strchr(natstr, type)) { #ifdef NATINT_PACK natint = 1; #endif p++; } else { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr); } goto modifiers; case '<': case '>': if (!strchr(endstr, type)) { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, endstr); } if (explicit_endian) { rb_raise(rb_eRangeError, "Can't use both '<' and '>'"); } explicit_endian = *p++; goto modifiers; } } if (*p == '*') { /* set data length */ len = strchr("@Xxu", type) ? 0 : strchr("PMm", type) ? 1 : items; p++; } else if (ISDIGIT(*p)) { errno = 0; len = STRTOUL(p, (char**)&p, 10); if (errno) { rb_raise(rb_eRangeError, "pack length too big"); } } else { len = 1; } switch (type) { case 'U': /* if encoding is US-ASCII, upgrade to UTF-8 */ if (enc_info == 1) enc_info = 2; break; case 'm': case 'M': case 'u': /* keep US-ASCII (do nothing) */ break; default: /* fall back to BINARY */ enc_info = 0; break; } switch (type) { case 'A': case 'a': case 'Z': case 'B': case 'b': case 'H': case 'h': from = NEXTFROM; if (NIL_P(from)) { ptr = ""; plen = 0; } else { StringValue(from); ptr = RSTRING_PTR(from); plen = RSTRING_LEN(from); OBJ_INFECT(res, from); } if (p[-1] == '*') len = plen; switch (type) { case 'a': /* arbitrary binary string (null padded) */ case 'A': /* arbitrary binary string (ASCII space padded) */ case 'Z': /* null terminated string */ if (plen >= len) { rb_str_buf_cat(res, ptr, len); if (p[-1] == '*' && type == 'Z') rb_str_buf_cat(res, nul10, 1); } else { rb_str_buf_cat(res, ptr, plen); len -= plen; while (len >= 10) { rb_str_buf_cat(res, (type == 'A')?spc10:nul10, 10); len -= 10; } rb_str_buf_cat(res, (type == 'A')?spc10:nul10, len); } break; case 'b': /* bit string (ascending) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len - plen + 1)/2; len = plen; } for (i=0; i++ < len; ptr++) { if (*ptr & 1) byte |= 128; if (i & 7) byte >>= 1; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 7) { char c; byte >>= 7 - (len & 7); c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'B': /* bit string (descending) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len - plen + 1)/2; len = plen; } for (i=0; i++ < len; ptr++) { byte |= *ptr & 1; if (i & 7) byte <<= 1; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 7) { char c; byte <<= 7 - (len & 7); c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'h': /* hex string (low nibble first) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len + 1) / 2 - (plen + 1) / 2; len = plen; } for (i=0; i++ < len; ptr++) { if (ISALPHA(*ptr)) byte |= (((*ptr & 15) + 9) & 15) << 4; else byte |= (*ptr & 15) << 4; if (i & 1) byte >>= 4; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 1) { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'H': /* hex string (high nibble first) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len + 1) / 2 - (plen + 1) / 2; len = plen; } for (i=0; i++ < len; ptr++) { if (ISALPHA(*ptr)) byte |= ((*ptr & 15) + 9) & 15; else byte |= *ptr & 15; if (i & 1) byte <<= 4; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 1) { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; } break; case 'c': /* signed char */ case 'C': /* unsigned char */ while (len-- > 0) { char c; from = NEXTFROM; c = (char)num2i32(from); rb_str_buf_cat(res, &c, sizeof(char)); } break; case 's': /* signed short */ signed_p = 1; integer_size = NATINT_LEN(short, 2); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'S': /* unsigned short */ signed_p = 0; integer_size = NATINT_LEN(short, 2); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'i': /* signed int */ signed_p = 1; integer_size = (int)sizeof(int); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'I': /* unsigned int */ signed_p = 0; integer_size = (int)sizeof(int); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'l': /* signed long */ signed_p = 1; integer_size = NATINT_LEN(long, 4); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'L': /* unsigned long */ signed_p = 0; integer_size = NATINT_LEN(long, 4); bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'q': /* signed quad (64bit) int */ signed_p = 1; integer_size = 8; bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'Q': /* unsigned quad (64bit) int */ signed_p = 0; integer_size = 8; bigendian_p = BIGENDIAN_P(); goto pack_integer; case 'n': /* unsigned short (network byte-order) */ signed_p = 0; integer_size = 2; bigendian_p = 1; goto pack_integer; case 'N': /* unsigned long (network byte-order) */ signed_p = 0; integer_size = 4; bigendian_p = 1; goto pack_integer; case 'v': /* unsigned short (VAX byte-order) */ signed_p = 0; integer_size = 2; bigendian_p = 0; goto pack_integer; case 'V': /* unsigned long (VAX byte-order) */ signed_p = 0; integer_size = 4; bigendian_p = 0; goto pack_integer; pack_integer: if (explicit_endian) { bigendian_p = explicit_endian == '>'; } switch (integer_size) { #if defined(HAVE_INT16_T) && !defined(FORCE_BIG_PACK) case SIZEOF_INT16_T: while (len-- > 0) { union { int16_t i; char a[sizeof(int16_t)]; } v; from = NEXTFROM; v.i = (int16_t)num2i32(from); if (bigendian_p != BIGENDIAN_P()) v.i = swap16(v.i); rb_str_buf_cat(res, v.a, sizeof(int16_t)); } break; #endif #if defined(HAVE_INT32_T) && !defined(FORCE_BIG_PACK) case SIZEOF_INT32_T: while (len-- > 0) { union { int32_t i; char a[sizeof(int32_t)]; } v; from = NEXTFROM; v.i = (int32_t)num2i32(from); if (bigendian_p != BIGENDIAN_P()) v.i = swap32(v.i); rb_str_buf_cat(res, v.a, sizeof(int32_t)); } break; #endif #if defined(HAVE_INT64_T) && SIZEOF_LONG == SIZEOF_INT64_T && !defined(FORCE_BIG_PACK) case SIZEOF_INT64_T: while (len-- > 0) { union { int64_t i; char a[sizeof(int64_t)]; } v; from = NEXTFROM; v.i = num2i32(from); /* can return 64bit value if SIZEOF_LONG == SIZEOF_INT64_T */ if (bigendian_p != BIGENDIAN_P()) v.i = swap64(v.i); rb_str_buf_cat(res, v.a, sizeof(int64_t)); } break; #endif default: if (integer_size > MAX_INTEGER_PACK_SIZE) rb_bug("unexpected intger size for pack: %d", integer_size); while (len-- > 0) { union { unsigned long i[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG]; char a[(MAX_INTEGER_PACK_SIZE+SIZEOF_LONG-1)/SIZEOF_LONG*SIZEOF_LONG]; } v; int num_longs = (integer_size+SIZEOF_LONG-1)/SIZEOF_LONG; int i; from = NEXTFROM; rb_big_pack(from, v.i, num_longs); if (bigendian_p) { for (i = 0; i < num_longs/2; i++) { unsigned long t = v.i[i]; v.i[i] = v.i[num_longs-1-i]; v.i[num_longs-1-i] = t; } } if (bigendian_p != BIGENDIAN_P()) { for (i = 0; i < num_longs; i++) v.i[i] = swapl(v.i[i]); } rb_str_buf_cat(res, bigendian_p ? v.a + sizeof(long)*num_longs - integer_size : v.a, integer_size); } break; } break; case 'f': /* single precision float in native format */ case 'F': /* ditto */ while (len-- > 0) { float f; from = NEXTFROM; f = (float)RFLOAT_VALUE(rb_to_float(from)); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'e': /* single precision float in VAX byte-order */ while (len-- > 0) { float f; FLOAT_CONVWITH(ftmp); from = NEXTFROM; f = (float)RFLOAT_VALUE(rb_to_float(from)); f = HTOVF(f,ftmp); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'E': /* double precision float in VAX byte-order */ while (len-- > 0) { double d; DOUBLE_CONVWITH(dtmp); from = NEXTFROM; d = RFLOAT_VALUE(rb_to_float(from)); d = HTOVD(d,dtmp); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'd': /* double precision float in native format */ case 'D': /* ditto */ while (len-- > 0) { double d; from = NEXTFROM; d = RFLOAT_VALUE(rb_to_float(from)); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'g': /* single precision float in network byte-order */ while (len-- > 0) { float f; FLOAT_CONVWITH(ftmp); from = NEXTFROM; f = (float)RFLOAT_VALUE(rb_to_float(from)); f = HTONF(f,ftmp); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'G': /* double precision float in network byte-order */ while (len-- > 0) { double d; DOUBLE_CONVWITH(dtmp); from = NEXTFROM; d = RFLOAT_VALUE(rb_to_float(from)); d = HTOND(d,dtmp); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'x': /* null byte */ grow: while (len >= 10) { rb_str_buf_cat(res, nul10, 10); len -= 10; } rb_str_buf_cat(res, nul10, len); break; case 'X': /* back up byte */ shrink: plen = RSTRING_LEN(res); if (plen < len) rb_raise(rb_eArgError, "X outside of string"); rb_str_set_len(res, plen - len); break; case '@': /* null fill to absolute position */ len -= RSTRING_LEN(res); if (len > 0) goto grow; len = -len; if (len > 0) goto shrink; break; case '%': rb_raise(rb_eArgError, "%% is not supported"); break; case 'U': /* Unicode character */ while (len-- > 0) { SIGNED_VALUE l; char buf[8]; int le; from = NEXTFROM; from = rb_to_int(from); l = NUM2LONG(from); if (l < 0) { rb_raise(rb_eRangeError, "pack(U): value out of range"); } le = rb_uv_to_utf8(buf, l); rb_str_buf_cat(res, (char*)buf, le); } break; case 'u': /* uuencoded string */ case 'm': /* base64 encoded string */ from = NEXTFROM; StringValue(from); ptr = RSTRING_PTR(from); plen = RSTRING_LEN(from); if (len == 0 && type == 'm') { encodes(res, ptr, plen, type, 0); ptr += plen; break; } if (len <= 2) len = 45; else len = len / 3 * 3; while (plen > 0) { long todo; if (plen > len) todo = len; else todo = plen; encodes(res, ptr, todo, type, 1); plen -= todo; ptr += todo; } break; case 'M': /* quoted-printable encoded string */ from = rb_obj_as_string(NEXTFROM); if (len <= 1) len = 72; qpencode(res, from, len); break; case 'P': /* pointer to packed byte string */ from = THISFROM; if (!NIL_P(from)) { StringValue(from); if (RSTRING_LEN(from) < len) { rb_raise(rb_eArgError, "too short buffer for P(%ld for %ld)", RSTRING_LEN(from), len); } } len = 1; /* FALL THROUGH */ case 'p': /* pointer to string */ while (len-- > 0) { char *t; from = NEXTFROM; if (NIL_P(from)) { t = 0; } else { t = StringValuePtr(from); } if (!associates) { associates = rb_ary_new(); } rb_ary_push(associates, from); rb_obj_taint(from); rb_str_buf_cat(res, (char*)&t, sizeof(char*)); } break; case 'w': /* BER compressed integer */ while (len-- > 0) { unsigned long ul; VALUE buf = rb_str_new(0, 0); char c, *bufs, *bufe; from = NEXTFROM; if (TYPE(from) == T_BIGNUM) { VALUE big128 = rb_uint2big(128); while (TYPE(from) == T_BIGNUM) { from = rb_big_divmod(from, big128); c = NUM2INT(RARRAY_PTR(from)[1]) | 0x80; /* mod */ rb_str_buf_cat(buf, &c, sizeof(char)); from = RARRAY_PTR(from)[0]; /* div */ } } { long l = NUM2LONG(from); if (l < 0) { rb_raise(rb_eArgError, "can't compress negative numbers"); } ul = l; } while (ul) { c = (char)(ul & 0x7f) | 0x80; rb_str_buf_cat(buf, &c, sizeof(char)); ul >>= 7; } if (RSTRING_LEN(buf)) { bufs = RSTRING_PTR(buf); bufe = bufs + RSTRING_LEN(buf) - 1; *bufs &= 0x7f; /* clear continue bit */ while (bufs < bufe) { /* reverse */ c = *bufs; *bufs++ = *bufe; *bufe-- = c; } rb_str_buf_cat(res, RSTRING_PTR(buf), RSTRING_LEN(buf)); } else { c = 0; rb_str_buf_cat(res, &c, sizeof(char)); } } break; default: break; } } if (associates) { rb_str_associate(res, associates); } OBJ_INFECT(res, fmt); switch (enc_info) { case 1: ENCODING_CODERANGE_SET(res, rb_usascii_encindex(), ENC_CODERANGE_7BIT); break; case 2: rb_enc_set_index(res, rb_utf8_encindex()); break; default: /* do nothing, keep ASCII-8BIT */ break; } return res; }
When invoked with a block, yield all permutations of length n of the elements of ary, then return the array itself. If n is not specified, yield all permutations of all elements. The implementation makes no guarantees about the order in which the permutations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2, 3] a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] a.permutation(1).to_a #=> [[1],[2],[3]] a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]] a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] a.permutation(0).to_a #=> [[]] # one permutation of length 0 a.permutation(4).to_a #=> [] # no permutations of length 4
static VALUE rb_ary_permutation(int argc, VALUE *argv, VALUE ary) { VALUE num; long r, n, i; n = RARRAY_LEN(ary); /* Array length */ RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */ rb_scan_args(argc, argv, "01", &num); r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */ if (r < 0 || n < r) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ volatile VALUE t0 = tmpbuf(n,sizeof(long)); long *p = (long*)RSTRING_PTR(t0); volatile VALUE t1 = tmpbuf(n,sizeof(char)); char *used = (char*)RSTRING_PTR(t1); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; MEMZERO(used, char, n); /* initialize array */ permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */ tmpbuf_discard(t0); tmpbuf_discard(t1); RBASIC(ary0)->klass = rb_cArray; } return ary; }
Removes the last element from self
and returns it, or
nil
if the array is empty.
If a number n is given, returns an array of the last n elements
(or less) just like array.slice!(-n, n)
does.
a = [ "a", "b", "c", "d" ] a.pop #=> "d" a.pop(2) #=> ["b", "c"] a #=> ["a"]
static VALUE rb_ary_pop_m(int argc, VALUE *argv, VALUE ary) { VALUE result; if (argc == 0) { return rb_ary_pop(ary); } rb_ary_modify_check(ary); result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); ARY_INCREASE_LEN(ary, -RARRAY_LEN(result)); return result; }
Returns an array of all combinations of elements from all arrays. The
length of the returned array is the product of the length of
self
and the argument arrays. If given a block,
product will yield all combinations and return self
instead.
[1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]] [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]] [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6], # [2,3,5],[2,3,6],[2,4,5],[2,4,6]] [1,2].product() #=> [[1],[2]] [1,2].product([]) #=> []
static VALUE rb_ary_product(int argc, VALUE *argv, VALUE ary) { int n = argc+1; /* How many arrays we're operating on */ volatile VALUE t0 = tmpary(n); volatile VALUE t1 = tmpbuf(n, sizeof(int)); VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */ int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */ VALUE result = Qnil; /* The array we'll be returning, when no block given */ long i,j; long resultlen = 1; RBASIC(t0)->klass = 0; RBASIC(t1)->klass = 0; /* initialize the arrays of arrays */ ARY_SET_LEN(t0, n); arrays[0] = ary; for (i = 1; i < n; i++) arrays[i] = Qnil; for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]); /* initialize the counters for the arrays */ for (i = 0; i < n; i++) counters[i] = 0; /* Otherwise, allocate and fill in an array of results */ if (rb_block_given_p()) { /* Make defensive copies of arrays; exit if any is empty */ for (i = 0; i < n; i++) { if (RARRAY_LEN(arrays[i]) == 0) goto done; arrays[i] = ary_make_shared_copy(arrays[i]); } } else { /* Compute the length of the result array; return [] if any is empty */ for (i = 0; i < n; i++) { long k = RARRAY_LEN(arrays[i]), l = resultlen; if (k == 0) { result = rb_ary_new2(0); goto done; } resultlen *= k; if (resultlen < k || resultlen < l || resultlen / k != l) { rb_raise(rb_eRangeError, "too big to product"); } } result = rb_ary_new2(resultlen); } for (;;) { int m; /* fill in one subarray */ VALUE subarray = rb_ary_new2(n); for (j = 0; j < n; j++) { rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j])); } /* put it on the result array */ if(NIL_P(result)) { FL_SET(t0, FL_USER5); rb_yield(subarray); if (! FL_TEST(t0, FL_USER5)) { rb_raise(rb_eRuntimeError, "product reentered"); } else { FL_UNSET(t0, FL_USER5); } } else { rb_ary_push(result, subarray); } /* * Increment the last counter. If it overflows, reset to 0 * and increment the one before it. */ m = n-1; counters[m]++; while (counters[m] == RARRAY_LEN(arrays[m])) { counters[m] = 0; /* If the first counter overflows, we are done */ if (--m < 0) goto done; counters[m]++; } } done: tmpary_discard(t0); tmpbuf_discard(t1); return NIL_P(result) ? ary : result; }
Append—Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together.
a = [ "a", "b", "c" ] a.push("d", "e", "f") #=> ["a", "b", "c", "d", "e", "f"]
static VALUE rb_ary_push_m(int argc, VALUE *argv, VALUE ary) { rb_ary_modify(ary); while (argc--) { rb_ary_push_1(ary, *argv++); } return ary; }
Searches through the array whose elements are also arrays. Compares
obj with the second element of each contained array using
==
. Returns the first contained array that matches. See also
Array#assoc
.
a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] a.rassoc("two") #=> [2, "two"] a.rassoc("four") #=> nil
VALUE rb_ary_rassoc(VALUE ary, VALUE value) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = RARRAY_PTR(ary)[i]; if (TYPE(v) == T_ARRAY && RARRAY_LEN(v) > 1 && rb_equal(RARRAY_PTR(v)[1], value)) return v; } return Qnil; }
Returns a new array containing the items in self
for which the
block is not true. See also Array#delete_if
If no block is given, an enumerator is returned instead.
static VALUE rb_ary_reject(VALUE ary) { VALUE rejected_ary; RETURN_ENUMERATOR(ary, 0, 0); rejected_ary = rb_ary_new(); ary_reject(ary, rejected_ary); return rejected_ary; }
Equivalent to Array#delete_if
, deleting elements from
self
for which the block evaluates to true, but returns
nil
if no changes were made. The array is changed instantly
every time the block is called and not after the iteration is over. See
also Enumerable#reject
and Array#delete_if
.
If no block is given, an enumerator is returned instead.
static VALUE rb_ary_reject_bang(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); return ary_reject_bang(ary); }
When invoked with a block, yields all repeated combinations of length n of elements from ary and then returns ary itself. The implementation makes no guarantees about the order in which the repeated combinations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2, 3] a.repeated_combination(1).to_a #=> [[1], [2], [3]] a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]] a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3], # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]] a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3], # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3], # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]] a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
static VALUE rb_ary_repeated_combination(VALUE ary, VALUE num) { long n, i, len; n = NUM2LONG(num); /* Combination size from argument */ RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */ len = RARRAY_LEN(ary); if (n < 0) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else if (len == 0) { /* yield nothing */ } else { volatile VALUE t0 = tmpbuf(n, sizeof(long)); long *p = (long*)RSTRING_PTR(t0); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */ tmpbuf_discard(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; }
When invoked with a block, yield all repeated permutations of length n of the elements of ary, then return the array itself. The implementation makes no guarantees about the order in which the repeated permutations are yielded.
If no block is given, an enumerator is returned instead.
Examples:
a = [1, 2] a.repeated_permutation(1).to_a #=> [[1], [2]] a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]] a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2], # [2,1,1],[2,1,2],[2,2,1],[2,2,2]] a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
static VALUE rb_ary_repeated_permutation(VALUE ary, VALUE num) { long r, n, i; n = RARRAY_LEN(ary); /* Array length */ RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */ r = NUM2LONG(num); /* Permutation size from argument */ if (r < 0) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ volatile VALUE t0 = tmpbuf(r, sizeof(long)); long *p = (long*)RSTRING_PTR(t0); VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ RBASIC(ary0)->klass = 0; rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */ tmpbuf_discard(t0); RBASIC(ary0)->klass = rb_cArray; } return ary; }
Replaces the contents of self
with the contents of
other_ary, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ] a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] a #=> ["x", "y", "z"]
VALUE rb_ary_replace(VALUE copy, VALUE orig) { rb_ary_modify_check(copy); orig = to_ary(orig); if (copy == orig) return copy; if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { VALUE *ptr; VALUE shared = 0; if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else if (ARY_SHARED_P(copy)) { shared = ARY_SHARED(copy); FL_UNSET_SHARED(copy); } FL_SET_EMBED(copy); ptr = RARRAY_PTR(orig); MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig)); if (shared) { rb_ary_decrement_share(shared); } ARY_SET_LEN(copy, RARRAY_LEN(orig)); } else { VALUE shared = ary_make_shared(orig); if (ARY_OWNS_HEAP_P(copy)) { xfree(RARRAY_PTR(copy)); } else { rb_ary_unshare_safe(copy); } FL_UNSET_EMBED(copy); ARY_SET_PTR(copy, RARRAY_PTR(orig)); ARY_SET_LEN(copy, RARRAY_LEN(orig)); rb_ary_set_shared(copy, shared); } return copy; }
Returns a new array containing self
‘s elements in reverse
order.
[ "a", "b", "c" ].reverse #=> ["c", "b", "a"] [ 1 ].reverse #=> [1]
static VALUE rb_ary_reverse_m(VALUE ary) { long len = RARRAY_LEN(ary); VALUE dup = rb_ary_new2(len); if (len > 0) { VALUE *p1 = RARRAY_PTR(ary); VALUE *p2 = RARRAY_PTR(dup) + len - 1; do *p2-- = *p1++; while (--len > 0); } ARY_SET_LEN(dup, RARRAY_LEN(ary)); return dup; }
Reverses self
in place.
a = [ "a", "b", "c" ] a.reverse! #=> ["c", "b", "a"] a #=> ["c", "b", "a"]
static VALUE rb_ary_reverse_bang(VALUE ary) { return rb_ary_reverse(ary); }
Same as Array#each
, but traverses self
in reverse
order.
a = [ "a", "b", "c" ] a.reverse_each {|x| print x, " " }
produces:
c b a
static VALUE rb_ary_reverse_each(VALUE ary) { long len; RETURN_ENUMERATOR(ary, 0, 0); len = RARRAY_LEN(ary); while (len--) { rb_yield(RARRAY_PTR(ary)[len]); if (RARRAY_LEN(ary) < len) { len = RARRAY_LEN(ary); } } return ary; }
Returns the index of the last object in self
==
to obj. If a block is given instead of an argument, returns index
of first object for which block is true, starting from the last
object. Returns nil
if no match is found. See also
Array#index
.
If neither block nor argument is given, an enumerator is returned instead.
a = [ "a", "b", "b", "b", "c" ] a.rindex("b") #=> 3 a.rindex("z") #=> nil a.rindex { |x| x == "b" } #=> 3
static VALUE rb_ary_rindex(int argc, VALUE *argv, VALUE ary) { VALUE val; long i = RARRAY_LEN(ary); if (argc == 0) { RETURN_ENUMERATOR(ary, 0, 0); while (i--) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } return Qnil; } rb_scan_args(argc, argv, "1", &val); if (rb_block_given_p()) rb_warn("given block not used"); while (i--) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } return Qnil; }
Returns new array by rotating self
so that the element at
cnt
in self
is the first element of the new
array. If cnt
is negative then it rotates in the opposite
direction.
a = [ "a", "b", "c", "d" ] a.rotate #=> ["b", "c", "d", "a"] a #=> ["a", "b", "c", "d"] a.rotate(2) #=> ["c", "d", "a", "b"] a.rotate(-3) #=> ["b", "c", "d", "a"]
static VALUE rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary) { VALUE rotated, *ptr, *ptr2; long len, cnt = 1; switch (argc) { case 1: cnt = NUM2LONG(argv[0]); case 0: break; default: rb_scan_args(argc, argv, "01", NULL); } len = RARRAY_LEN(ary); rotated = rb_ary_new2(len); if (len > 0) { cnt = rotate_count(cnt, len); ptr = RARRAY_PTR(ary); ptr2 = RARRAY_PTR(rotated); len -= cnt; MEMCPY(ptr2, ptr + cnt, VALUE, len); MEMCPY(ptr2 + len, ptr, VALUE, cnt); } ARY_SET_LEN(rotated, RARRAY_LEN(ary)); return rotated; }
Rotates self
in place so that the element at cnt
comes first, and returns self
. If cnt
is
negative then it rotates in the opposite direction.
a = [ "a", "b", "c", "d" ] a.rotate! #=> ["b", "c", "d", "a"] a #=> ["b", "c", "d", "a"] a.rotate!(2) #=> ["d", "a", "b", "c"] a.rotate!(-3) #=> ["a", "b", "c", "d"]
static VALUE rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary) { long n = 1; switch (argc) { case 1: n = NUM2LONG(argv[0]); case 0: break; default: rb_scan_args(argc, argv, "01", NULL); } rb_ary_rotate(ary, n); return ary; }
Choose a random element or n
random elements from the array.
The elements are chosen by using random and unique indices into the array
in order to ensure that an element doesn’t repeat itself unless the array
already contained duplicate elements. If the array is empty the first form
returns nil
and the second form returns an empty array.
If rng
is given, it will be used as the random number
generator.
static VALUE rb_ary_sample(int argc, VALUE *argv, VALUE ary) { VALUE nv, result, *ptr; VALUE opts, randgen = rb_cRandom; long n, len, i, j, k, idx[10]; double rnds[numberof(idx)]; if (OPTHASH_GIVEN_P(opts)) { randgen = rb_hash_lookup2(opts, sym_random, randgen); } ptr = RARRAY_PTR(ary); len = RARRAY_LEN(ary); if (argc == 0) { if (len == 0) return Qnil; if (len == 1) { i = 0; } else { double x = rb_random_real(randgen); if ((len = RARRAY_LEN(ary)) == 0) return Qnil; i = (long)(x * len); } return RARRAY_PTR(ary)[i]; } rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n < 0) rb_raise(rb_eArgError, "negative sample number"); if (n > len) n = len; if (n <= numberof(idx)) { for (i = 0; i < n; ++i) { rnds[i] = rb_random_real(randgen); } } len = RARRAY_LEN(ary); ptr = RARRAY_PTR(ary); if (n > len) n = len; switch (n) { case 0: return rb_ary_new2(0); case 1: i = (long)(rnds[0] * len); return rb_ary_new4(1, &ptr[i]); case 2: i = (long)(rnds[0] * len); j = (long)(rnds[1] * (len-1)); if (j >= i) j++; return rb_ary_new3(2, ptr[i], ptr[j]); case 3: i = (long)(rnds[0] * len); j = (long)(rnds[1] * (len-1)); k = (long)(rnds[2] * (len-2)); { long l = j, g = i; if (j >= i) l = i, g = ++j; if (k >= l && (++k >= g)) ++k; } return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]); } if (n <= numberof(idx)) { VALUE *ptr_result; long sorted[numberof(idx)]; sorted[0] = idx[0] = (long)(rnds[0] * len); for (i=1; i<n; i++) { k = (long)(rnds[i] * --len); for (j = 0; j < i; ++j) { if (k < sorted[j]) break; ++k; } memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j)); sorted[j] = idx[i] = k; } result = rb_ary_new2(n); ptr_result = RARRAY_PTR(result); for (i=0; i<n; i++) { ptr_result[i] = ptr[idx[i]]; } } else { VALUE *ptr_result; result = rb_ary_new4(len, ptr); RBASIC(result)->klass = 0; ptr_result = RARRAY_PTR(result); RB_GC_GUARD(ary); for (i=0; i<n; i++) { j = RAND_UPTO(len-i) + i; nv = ptr_result[j]; ptr_result[j] = ptr_result[i]; ptr_result[i] = nv; } RBASIC(result)->klass = rb_cArray; } ARY_SET_LEN(result, n); return result; }
Invokes the block passing in successive elements from self
,
returning an array containing those elements for which the block returns a
true value (equivalent to Enumerable#select
).
If no block is given, an enumerator is returned instead.
a = %w{ a b c d e f } a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
static VALUE rb_ary_select(VALUE ary) { VALUE result; long i; RETURN_ENUMERATOR(ary, 0, 0); result = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { rb_ary_push(result, rb_ary_elt(ary, i)); } } return result; }
Invokes the block passing in successive elements from self
,
deleting elements for which the block returns a false value. It returns
self
if changes were made, otherwise it returns
nil
. See also Array#keep_if
If no block is given, an enumerator is returned instead.
static VALUE rb_ary_select_bang(VALUE ary) { long i1, i2; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE v = RARRAY_PTR(ary)[i1]; if (!RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY_LEN(ary) == i2) return Qnil; if (i2 < RARRAY_LEN(ary)) ARY_SET_LEN(ary, i2); return ary; }
Returns the first element of self
and removes it (shifting all
other elements down by one). Returns nil
if the array is
empty.
If a number n is given, returns an array of the first n elements
(or less) just like array.slice!(0, n)
does.
args = [ "-m", "-q", "filename" ] args.shift #=> "-m" args #=> ["-q", "filename"] args = [ "-m", "-q", "filename" ] args.shift(2) #=> ["-m", "-q"] args #=> ["filename"]
static VALUE rb_ary_shift_m(int argc, VALUE *argv, VALUE ary) { VALUE result; long n; if (argc == 0) { return rb_ary_shift(ary); } rb_ary_modify_check(ary); result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); n = RARRAY_LEN(result); if (ARY_SHARED_P(ary)) { if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) { rb_mem_clear(RARRAY_PTR(ary), n); } ARY_INCREASE_PTR(ary, n); } else { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n); } ARY_INCREASE_LEN(ary, -n); return result; }
Returns a new array with elements of this array shuffled.
a = [ 1, 2, 3 ] #=> [1, 2, 3] a.shuffle #=> [2, 3, 1]
If rng
is given, it will be used as the random number
generator.
a.shuffle(random: Random.new(1)) #=> [1, 3, 2]
static VALUE rb_ary_shuffle(int argc, VALUE *argv, VALUE ary) { ary = rb_ary_dup(ary); rb_ary_shuffle_bang(argc, argv, ary); return ary; }
Shuffles elements in self
in place. If rng
is
given, it will be used as the random number generator.
static VALUE rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary) { VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom; long i, snap_len; if (OPTHASH_GIVEN_P(opts)) { randgen = rb_hash_lookup2(opts, sym_random, randgen); } if (argc > 0) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc); } rb_ary_modify(ary); i = RARRAY_LEN(ary); ptr = RARRAY_PTR(ary); snap_len = i; snap_ptr = ptr; while (i) { long j = RAND_UPTO(i); VALUE tmp; if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) { rb_raise(rb_eRuntimeError, "modified during shuffle"); } tmp = ptr[--i]; ptr[i] = ptr[j]; ptr[j] = tmp; } return ary; }
Element Reference—Returns the element at index, or returns a
subarray starting at start and continuing for length
elements, or returns a subarray specified by range. Negative
indices count backward from the end of the array (-1 is the last element).
Returns nil
if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ] a[2] + a[0] + a[1] #=> "cab" a[6] #=> nil a[1, 2] #=> [ "b", "c" ] a[1..3] #=> [ "b", "c", "d" ] a[4..7] #=> [ "e" ] a[6..10] #=> nil a[-3, 3] #=> [ "c", "d", "e" ] # special cases a[5] #=> nil a[5, 1] #=> [] a[5..10] #=> []
VALUE rb_ary_aref(int argc, VALUE *argv, VALUE ary) { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY_LEN(ary); } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); }
Deletes the element(s) given by an index (optionally with a length) or by a
range. Returns the deleted object (or objects), or nil
if the
index is out of range.
a = [ "a", "b", "c" ] a.slice!(1) #=> "b" a #=> ["a", "c"] a.slice!(-1) #=> "c" a #=> ["a"] a.slice!(100) #=> nil a #=> ["a"]
static VALUE rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary) { VALUE arg1, arg2; long pos, len, orig_len; rb_ary_modify_check(ary); if (argc == 2) { pos = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); delete_pos_len: if (len < 0) return Qnil; orig_len = RARRAY_LEN(ary); if (pos < 0) { pos += orig_len; if (pos < 0) return Qnil; } else if (orig_len < pos) return Qnil; if (orig_len < pos + len) { len = orig_len - pos; } if (len == 0) return rb_ary_new2(0); arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos); RBASIC(arg2)->klass = rb_obj_class(ary); rb_ary_splice(ary, pos, len, Qundef); return arg2; } if (argc != 1) { /* error report */ rb_scan_args(argc, argv, "11", NULL, NULL); } arg1 = argv[0]; if (!FIXNUM_P(arg1)) { switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) { case Qtrue: /* valid range */ goto delete_pos_len; case Qnil: /* invalid range */ return Qnil; default: /* not a range */ break; } } return rb_ary_delete_at(ary, NUM2LONG(arg1)); }
Returns a new array created by sorting self
. Comparisons for
the sort will be done using the <=>
operator or using an
optional code block. The block implements a comparison between a
and b, returning -1, 0, or +1. See also
Enumerable#sort_by
.
a = [ "d", "a", "e", "c", "b" ] a.sort #=> ["a", "b", "c", "d", "e"] a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
VALUE rb_ary_sort(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_sort_bang(ary); return ary; }
Sorts self
. Comparisons for the sort will be done using the
<=>
operator or using an optional code block. The block
implements a comparison between a and b, returning -1, 0,
or +1. See also Enumerable#sort_by
.
a = [ "d", "a", "e", "c", "b" ] a.sort! #=> ["a", "b", "c", "d", "e"] a.sort! {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
VALUE rb_ary_sort_bang(VALUE ary) { rb_ary_modify(ary); assert(!ARY_SHARED_P(ary)); if (RARRAY_LEN(ary) > 1) { VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */ struct ary_sort_data data; RBASIC(tmp)->klass = 0; data.ary = tmp; data.opt_methods = 0; data.opt_inited = 0; ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE), rb_block_given_p()?sort_1:sort_2, &data); if (ARY_EMBED_P(tmp)) { assert(ARY_EMBED_P(tmp)); if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ rb_ary_unshare(ary); } FL_SET_EMBED(ary); MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp)); ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp)); } else { assert(!ARY_EMBED_P(tmp)); if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) { assert(!ARY_EMBED_P(ary)); FL_UNSET_SHARED(ary); ARY_SET_CAPA(ary, ARY_CAPA(tmp)); } else { assert(!ARY_SHARED_P(tmp)); if (ARY_EMBED_P(ary)) { FL_UNSET_EMBED(ary); } else if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ rb_ary_unshare(ary); } else { xfree(ARY_HEAP_PTR(ary)); } ARY_SET_PTR(ary, RARRAY_PTR(tmp)); ARY_SET_HEAP_LEN(ary, RARRAY_LEN(tmp)); ARY_SET_CAPA(ary, ARY_CAPA(tmp)); } /* tmp was lost ownership for the ptr */ FL_UNSET(tmp, FL_FREEZE); FL_SET_EMBED(tmp); ARY_SET_EMBED_LEN(tmp, 0); FL_SET(tmp, FL_FREEZE); } /* tmp will be GC'ed. */ RBASIC(tmp)->klass = rb_cArray; } return ary; }
Sorts self
in place using a set of keys generated by mapping
the values in self
through the given block.
If no block is given, an enumerator is returned instead.
static VALUE rb_ary_sort_by_bang(VALUE ary) { VALUE sorted; RETURN_ENUMERATOR(ary, 0, 0); rb_ary_modify(ary); sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0); rb_ary_replace(ary, sorted); return ary; }
Returns first n elements from ary.
a = [1, 2, 3, 4, 5, 0] a.take(3) #=> [1, 2, 3]
static VALUE rb_ary_take(VALUE obj, VALUE n) { long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } return rb_ary_subseq(obj, 0, len); }
Passes elements to the block until the block returns nil
or
false
, then stops iterating and returns an array of all prior
elements.
If no block is given, an enumerator is returned instead.
a = [1, 2, 3, 4, 5, 0] a.take_while {|i| i < 3 } #=> [1, 2]
static VALUE rb_ary_take_while(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); for (i = 0; i < RARRAY_LEN(ary); i++) { if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break; } return rb_ary_take(ary, LONG2FIX(i)); }
Returns self
.
static VALUE rb_ary_to_ary_m(VALUE ary) { return ary; }
Assumes that self
is an array of arrays and transposes the
rows and columns.
a = [[1,2], [3,4], [5,6]] a.transpose #=> [[1, 3, 5], [2, 4, 6]]
static VALUE rb_ary_transpose(VALUE ary) { long elen = -1, alen, i, j; VALUE tmp, result = 0; alen = RARRAY_LEN(ary); if (alen == 0) return rb_ary_dup(ary); for (i=0; i<alen; i++) { tmp = to_ary(rb_ary_elt(ary, i)); if (elen < 0) { /* first element */ elen = RARRAY_LEN(tmp); result = rb_ary_new2(elen); for (j=0; j<elen; j++) { rb_ary_store(result, j, rb_ary_new2(alen)); } } else if (elen != RARRAY_LEN(tmp)) { rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)", RARRAY_LEN(tmp), elen); } for (j=0; j<elen; j++) { rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j)); } } return result; }
Returns a new array by removing duplicate values in self
. If a
block is given, it will use the return value of the block for comparison.
a = [ "a", "a", "b", "b", "c" ] a.uniq # => ["a", "b", "c"] b = [["student","sam"], ["student","george"], ["teacher","matz"]] b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]
static VALUE rb_ary_uniq(VALUE ary) { VALUE hash, uniq, v; long i; if (RARRAY_LEN(ary) <= 1) return rb_ary_dup(ary); if (rb_block_given_p()) { hash = ary_make_hash_by(ary); uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash)); st_foreach(RHASH_TBL(hash), push_value, uniq); } else { hash = ary_make_hash(ary); uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash)); for (i=0; i<RARRAY_LEN(ary); i++) { st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(uniq, v); } } } ary_recycle_hash(hash); return uniq; }
Removes duplicate elements from self
. If a block is given, it
will use the return value of the block for comparison. Returns
nil
if no changes are made (that is, no duplicates are found).
a = [ "a", "a", "b", "b", "c" ] a.uniq! # => ["a", "b", "c"] b = [ "a", "b", "c" ] b.uniq! # => nil c = [["student","sam"], ["student","george"], ["teacher","matz"]] c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]
static VALUE rb_ary_uniq_bang(VALUE ary) { VALUE hash, v; long i, j; rb_ary_modify_check(ary); if (RARRAY_LEN(ary) <= 1) return Qnil; if (rb_block_given_p()) { hash = ary_make_hash_by(ary); if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) { return Qnil; } ARY_SET_LEN(ary, 0); if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { rb_ary_unshare(ary); FL_SET_EMBED(ary); } ary_resize_capa(ary, i); st_foreach(RHASH_TBL(hash), push_value, ary); } else { hash = ary_make_hash(ary); if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) { return Qnil; } for (i=j=0; i<RARRAY_LEN(ary); i++) { st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_store(ary, j++, v); } } ARY_SET_LEN(ary, j); } ary_recycle_hash(hash); return ary; }
Prepends objects to the front of self
, moving other elements
upwards.
a = [ "b", "c", "d" ] a.unshift("a") #=> ["a", "b", "c", "d"] a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
static VALUE rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary) { long len; rb_ary_modify(ary); if (argc == 0) return ary; if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) { ary_double_capa(ary, len + argc); } /* sliding items */ MEMMOVE(RARRAY_PTR(ary) + argc, RARRAY_PTR(ary), VALUE, len); MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); ARY_INCREASE_LEN(ary, argc); return ary; }
Returns an array containing the elements in self
corresponding
to the given selector(s). The selectors may be either integer indices or
ranges. See also Array#select
.
a = %w{ a b c d e f } a.values_at(1, 3, 5) a.values_at(1, 3, 5, 7) a.values_at(-1, -3, -5, -7) a.values_at(1..3, 2...5)
static VALUE rb_ary_values_at(int argc, VALUE *argv, VALUE ary) { return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry); }
Converts any arguments to arrays, then merges elements of self
with corresponding elements from each argument. This generates a sequence
of self.size
n-element arrays, where n is
one more that the count of arguments. If the size of any argument is less
than enumObj.size
, nil
values are supplied. If a
block is given, it is invoked for each output array, otherwise an array of
arrays is returned.
a = [ 4, 5, 6 ] b = [ 7, 8, 9 ] [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]] a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
static VALUE rb_ary_zip(int argc, VALUE *argv, VALUE ary) { int i, j; long len; VALUE result = Qnil; len = RARRAY_LEN(ary); for (i=0; i<argc; i++) { argv[i] = take_items(argv[i], len); } if (!rb_block_given_p()) { result = rb_ary_new2(len); } for (i=0; i<RARRAY_LEN(ary); i++) { VALUE tmp = rb_ary_new2(argc+1); rb_ary_push(tmp, rb_ary_elt(ary, i)); for (j=0; j<argc; j++) { rb_ary_push(tmp, rb_ary_elt(argv[j], i)); } if (NIL_P(result)) { rb_yield(tmp); } else { rb_ary_push(result, tmp); } } return result; }
Set Union—Returns a new array by joining this array with other_ary, removing duplicates.
[ "a", "b", "c" ] | [ "c", "d", "a" ] #=> [ "a", "b", "c", "d" ]
static VALUE rb_ary_or(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v; st_data_t vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2)); hash = ary_add_hash(ary_make_hash(ary1), ary2); for (i=0; i<RARRAY_LEN(ary1); i++) { vv = (st_data_t)(v = rb_ary_elt(ary1, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(ary3, v); } } for (i=0; i<RARRAY_LEN(ary2); i++) { vv = (st_data_t)(v = rb_ary_elt(ary2, i)); if (st_delete(RHASH_TBL(hash), &vv, 0)) { rb_ary_push(ary3, v); } } ary_recycle_hash(hash); return ary3; }