Extended maintenance of Ruby 1.9.3 ended on February 23, 2015. Read more
A Module
is a collection of methods and constants. The methods
in a module may be instance methods or module methods. Instance methods
appear as methods in a class when the module is included, module methods do
not. Conversely, module methods may be called without creating an
encapsulating object, while instance methods may not. (See
Module#module_function
)
In the descriptions that follow, the parameter sym refers to a
symbol, which is either a quoted string or a Symbol
(such as
:name
).
module Mod include Math CONST = 1 def meth # ... end end Mod.class #=> Module Mod.constants #=> [:CONST, :PI, :E] Mod.instance_methods #=> [:meth]
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4) # => [:ARGF, :ARGV, :ArgumentError, :Array] Module.constants.include?(:SEEK_SET) # => false class IO Module.constants.include?(:SEEK_SET) # => true end
The second form calls the instance method constants
.
static VALUE rb_mod_s_constants(int argc, VALUE *argv, VALUE mod) { const NODE *cref = rb_vm_cref(); VALUE klass; VALUE cbase = 0; void *data = 0; if (argc > 0 || mod != rb_cModule) { return rb_mod_constants(argc, argv, mod); } while (cref) { klass = cref->nd_clss; if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) && !NIL_P(klass)) { data = rb_mod_const_at(cref->nd_clss, data); if (!cbase) { cbase = klass; } } cref = cref->nd_next; } if (cbase) { data = rb_mod_const_of(cbase, data); } return rb_const_list(data); }
Returns the list of Modules
nested at the point of call.
module M1 module M2 $a = Module.nesting end end $a #=> [M1::M2, M1] $a[0].name #=> "M1::M2"
static VALUE rb_mod_nesting(void) { VALUE ary = rb_ary_new(); const NODE *cref = rb_vm_cref(); while (cref && cref->nd_next) { VALUE klass = cref->nd_clss; if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) && !NIL_P(klass)) { rb_ary_push(ary, klass); } cref = cref->nd_next; } return ary; }
Creates a new anonymous module. If a block is given, it is passed the
module object, and the block is evaluated in the context of this module
using module_eval
.
fred = Module.new do def meth1 "hello" end def meth2 "bye" end end a = "my string" a.extend(fred) #=> "my string" a.meth1 #=> "hello" a.meth2 #=> "bye"
Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.
static VALUE rb_mod_initialize(VALUE module) { if (rb_block_given_p()) { rb_mod_module_exec(1, &module, module); } return Qnil; }
Returns true if mod is a subclass of other. Returns
nil
if there’s no relationship between the two. (Think of the
relationship in terms of the class definition: “class A<B” implies
“A<B”).
static VALUE rb_mod_lt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_class_inherited_p(mod, arg); }
Returns true if mod is a subclass of other or is the same
as other. Returns nil
if there’s no relationship
between the two. (Think of the relationship in terms of the class
definition: “class A<B” implies “A<B”).
VALUE rb_class_inherited_p(VALUE mod, VALUE arg) { VALUE start = mod; if (mod == arg) return Qtrue; switch (TYPE(arg)) { case T_MODULE: case T_CLASS: break; default: rb_raise(rb_eTypeError, "compared with non class/module"); } while (mod) { if (RCLASS_M_TBL(mod) == RCLASS_M_TBL(arg)) return Qtrue; mod = RCLASS_SUPER(mod); } /* not mod < arg; check if mod > arg */ while (arg) { if (RCLASS_M_TBL(arg) == RCLASS_M_TBL(start)) return Qfalse; arg = RCLASS_SUPER(arg); } return Qnil; }
Comparison—Returns -1 if mod includes other_mod, 0 if
mod is the same as other_mod, and +1 if mod is
included by other_mod. Returns nil
if mod
has no relationship with other_mod or if other_mod is not
a module.
static VALUE rb_mod_cmp(VALUE mod, VALUE arg) { VALUE cmp; if (mod == arg) return INT2FIX(0); switch (TYPE(arg)) { case T_MODULE: case T_CLASS: break; default: return Qnil; } cmp = rb_class_inherited_p(mod, arg); if (NIL_P(cmp)) return Qnil; if (cmp) { return INT2FIX(-1); } return INT2FIX(1); }
Equality—At the Object
level, ==
returns
true
only if obj and other are the same
object. Typically, this method is overridden in descendant classes to
provide class-specific meaning.
Unlike ==
, the equal?
method should never be
overridden by subclasses: it is used to determine object identity (that is,
a.equal?(b)
iff a
is the same object as
b
).
The eql?
method returns true
if obj and
anObject have the same value. Used by Hash
to test
members for equality. For objects of class Object
,
eql?
is synonymous with ==
. Subclasses normally
continue this tradition, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not
across eql?
, so:
1 == 1.0 #=> true 1.eql? 1.0 #=> false
VALUE rb_obj_equal(VALUE obj1, VALUE obj2) { if (obj1 == obj2) return Qtrue; return Qfalse; }
Case Equality—Returns true
if anObject is an instance
of mod or one of mod’s descendants. Of limited use for
modules, but can be used in case
statements to classify
objects by class.
static VALUE rb_mod_eqq(VALUE mod, VALUE arg) { return rb_obj_is_kind_of(arg, mod); }
Returns true if mod is an ancestor of other. Returns
nil
if there’s no relationship between the two. (Think of the
relationship in terms of the class definition: “class A<B” implies
“B>A”).
static VALUE rb_mod_gt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_mod_ge(mod, arg); }
Returns true if mod is an ancestor of other, or the two
modules are the same. Returns nil
if there’s no relationship
between the two. (Think of the relationship in terms of the class
definition: “class A<B” implies “B>A”).
static VALUE rb_mod_ge(VALUE mod, VALUE arg) { switch (TYPE(arg)) { case T_MODULE: case T_CLASS: break; default: rb_raise(rb_eTypeError, "compared with non class/module"); } return rb_class_inherited_p(arg, mod); }
Returns a list of modules included in mod (including mod itself).
module Mod include Math include Comparable end Mod.ancestors #=> [Mod, Comparable, Math] Math.ancestors #=> [Math]
VALUE rb_mod_ancestors(VALUE mod) { VALUE p, ary = rb_ary_new(); for (p = mod; p; p = RCLASS_SUPER(p)) { if (FL_TEST(p, FL_SINGLETON)) continue; if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, RBASIC(p)->klass); } else { rb_ary_push(ary, p); } } return ary; }
Registers filename to be loaded (using
Kernel::require
) the first time that module (which
may be a String
or a symbol) is accessed in the namespace of
mod.
module A end A.autoload(:B, "b") A::B.doit # autoloads "b"
static VALUE rb_mod_autoload(VALUE mod, VALUE sym, VALUE file) { ID id = rb_to_id(sym); FilePathValue(file); rb_autoload(mod, id, RSTRING_PTR(file)); return Qnil; }
Returns filename to be loaded if name is registered as
autoload
in the namespace of mod.
module A end A.autoload(:B, "b") A.autoload?(:B) #=> "b"
static VALUE rb_mod_autoload_p(VALUE mod, VALUE sym) { return rb_autoload_p(mod, rb_to_id(sym)); }
Evaluates the string or block in the context of mod. This can be
used to add methods to a class. module_eval
returns the result
of evaluating its argument. The optional filename and
lineno parameters set the text for error messages.
class Thing end a = %q{def hello() "Hello there!" end} Thing.module_eval(a) puts Thing.new.hello() Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there! dummy:123:in `module_eval': undefined local variable or method `code' for Thing:Class
VALUE rb_mod_module_eval(int argc, VALUE *argv, VALUE mod) { return specific_eval(argc, argv, mod, mod); }
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver.
class Thing end Thing.class_exec{ def hello() "Hello there!" end } puts Thing.new.hello()
produces:
Hello there!
VALUE rb_mod_module_exec(int argc, VALUE *argv, VALUE mod) { return yield_under(mod, mod, rb_ary_new4(argc, argv)); }
Returns true
if the given class variable is defined in
obj.
class Fred @@foo = 99 end Fred.class_variable_defined?(:@@foo) #=> true Fred.class_variable_defined?(:@@bar) #=> false
static VALUE rb_mod_cvar_defined(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_class_id(id)) { rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id)); } return rb_cvar_defined(obj, id); }
Returns the value of the given class variable (or throws a
NameError
exception). The @@
part of the variable
name should be included for regular class variables
class Fred @@foo = 99 end Fred.class_variable_get(:@@foo) #=> 99
static VALUE rb_mod_cvar_get(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_class_id(id)) { rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id)); } return rb_cvar_get(obj, id); }
Sets the class variable names by symbol to object.
class Fred @@foo = 99 def foo @@foo end end Fred.class_variable_set(:@@foo, 101) #=> 101 Fred.new.foo #=> 101
static VALUE rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val) { ID id = rb_to_id(iv); if (!rb_is_class_id(id)) { rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id)); } rb_cvar_set(obj, id, val); return val; }
Returns an array of the names of class variables in mod.
class One @@var1 = 1 end class Two < One @@var2 = 2 end One.class_variables #=> [:@@var1] Two.class_variables #=> [:@@var2]
VALUE rb_mod_class_variables(VALUE obj) { VALUE ary = rb_ary_new(); if (RCLASS_IV_TBL(obj)) { st_foreach_safe(RCLASS_IV_TBL(obj), cv_i, ary); } return ary; }
Checks for a constant with the given name in mod If
inherit
is set, the lookup will also search the ancestors (and
Object
if mod is a Module
.)
Returns whether or not a definition is found:
Math.const_defined? "PI" #=> true IO.const_defined? :SYNC #=> true IO.const_defined? :SYNC, false #=> false
static VALUE rb_mod_const_defined(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; ID id; if (argc == 1) { name = argv[0]; recur = Qtrue; } else { rb_scan_args(argc, argv, "11", &name, &recur); } id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %s", rb_id2name(id)); } return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id); }
Checks for a constant with the given name in mod If
inherit
is set, the lookup will also search the ancestors (and
Object
if mod is a Module
.)
The value of the constant is returned if a definition is found, otherwise a
NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
static VALUE rb_mod_const_get(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; ID id; if (argc == 1) { name = argv[0]; recur = Qtrue; } else { rb_scan_args(argc, argv, "11", &name, &recur); } id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %s", rb_id2name(id)); } return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id); }
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name) name # return the constant name as Symbol end Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it
attempts to load a file whose name is the lowercase version of the constant
(thus class Fred
is assumed to be in file
fred.rb
). If found, it returns the loaded class. It therefore
implements an autoload feature similar to Kernel#autoload and #autoload.
def Object.const_missing(name) @looked_for ||= {} str_name = name.to_s raise "Class not found: #{name}" if @looked_for[str_name] @looked_for[str_name] = 1 file = str_name.downcase require file klass = const_get(name) return klass if klass raise "Class not found: #{name}" end
VALUE rb_mod_const_missing(VALUE klass, VALUE name) { rb_frame_pop(); /* pop frame for "const_missing" */ uninitialized_constant(klass, rb_to_id(name)); return Qnil; /* not reached */ }
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
static VALUE rb_mod_const_set(VALUE mod, VALUE name, VALUE value) { ID id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %s", rb_id2name(id)); } rb_const_set(mod, id, value); return value; }
Returns an array of the names of the constants accessible in mod.
This includes the names of constants in any included modules (example at
start of section), unless the all parameter is set to
false
.
IO.constants.include?(:SYNC) #=> true IO.constants(false).include?(:SYNC) #=> false
Also see Module::const_defined?
.
VALUE rb_mod_constants(int argc, VALUE *argv, VALUE mod) { VALUE inherit; st_table *tbl; if (argc == 0) { inherit = Qtrue; } else { rb_scan_args(argc, argv, "01", &inherit); } if (RTEST(inherit)) { tbl = rb_mod_const_of(mod, 0); } else { tbl = rb_mod_const_at(mod, 0); } return rb_const_list(tbl); }
Prevents further modifications to mod.
This method returns self.
static VALUE rb_mod_freeze(VALUE mod) { rb_class_name(mod); return rb_obj_freeze(mod); }
Returns true
if module is included in mod or
one of mod's ancestors.
module A end class B include A end class C < B end B.include?(A) #=> true C.include?(A) #=> true A.include?(A) #=> false
VALUE rb_mod_include_p(VALUE mod, VALUE mod2) { VALUE p; Check_Type(mod2, T_MODULE); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS) { if (RBASIC(p)->klass == mod2) return Qtrue; } } return Qfalse; }
Returns the list of modules included in mod.
module Mixin end module Outer include Mixin end Mixin.included_modules #=> [] Outer.included_modules #=> [Mixin]
VALUE rb_mod_included_modules(VALUE mod) { VALUE ary = rb_ary_new(); VALUE p; for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, RBASIC(p)->klass); } } return ary; }
Returns an UnboundMethod
representing the given instance
method in mod.
class Interpreter def do_a() print "there, "; end def do_d() print "Hello "; end def do_e() print "!\n"; end def do_v() print "Dave"; end Dispatcher = { "a" => instance_method(:do_a), "d" => instance_method(:do_d), "e" => instance_method(:do_e), "v" => instance_method(:do_v) } def interpret(string) string.each_char {|b| Dispatcher[b].bind(self).call } end end interpreter = Interpreter.new interpreter.interpret('dave')
produces:
Hello there, Dave!
static VALUE rb_mod_instance_method(VALUE mod, VALUE vid) { return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, FALSE); }
Returns an array containing the names of the public and protected instance
methods in the receiver. For a module, these are the public and protected
methods; for a class, they are the instance (not singleton) methods. With
no argument, or with an argument that is false
, the instance
methods in mod are returned, otherwise the methods in mod
and mod's superclasses are returned.
module A def method1() end end class B def method2() end end class C < B def method3() end end A.instance_methods #=> [:method1] B.instance_methods(false) #=> [:method2] C.instance_methods(false) #=> [:method3] C.instance_methods(true).length #=> 43
VALUE rb_class_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_i); }
Returns true
if the named method is defined by mod
(or its included modules and, if mod is a class, its ancestors).
Public and protected methods are matched.
module A def method1() end end class B def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.method_defined? "method1" #=> true C.method_defined? "method2" #=> true C.method_defined? "method3" #=> true C.method_defined? "method4" #=> false
static VALUE rb_mod_method_defined(VALUE mod, VALUE mid) { if (!rb_method_boundp(mod, rb_to_id(mid), 1)) { return Qfalse; } return Qtrue; }
Evaluates the string or block in the context of mod. This can be
used to add methods to a class. module_eval
returns the result
of evaluating its argument. The optional filename and
lineno parameters set the text for error messages.
class Thing end a = %q{def hello() "Hello there!" end} Thing.module_eval(a) puts Thing.new.hello() Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there! dummy:123:in `module_eval': undefined local variable or method `code' for Thing:Class
VALUE rb_mod_module_eval(int argc, VALUE *argv, VALUE mod) { return specific_eval(argc, argv, mod, mod); }
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver.
class Thing end Thing.class_exec{ def hello() "Hello there!" end } puts Thing.new.hello()
produces:
Hello there!
VALUE rb_mod_module_exec(int argc, VALUE *argv, VALUE mod) { return yield_under(mod, mod, rb_ary_new4(argc, argv)); }
Returns the name of the module mod. Returns nil for anonymous modules.
VALUE rb_mod_name(VALUE mod) { VALUE path = classname(mod); if (!NIL_P(path)) return rb_str_dup(path); return path; }
Makes existing class methods private. Often used to hide the default
constructor new
.
class SimpleSingleton # Not thread safe private_class_method :new def SimpleSingleton.create(*args, &block) @me = new(*args, &block) if ! @me @me end end
static VALUE rb_mod_private_method(int argc, VALUE *argv, VALUE obj) { set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PRIVATE); return obj; }
Returns a list of the private instance methods defined in mod. If
the optional parameter is not false
, the methods of any
ancestors are included.
module Mod def method1() end private :method1 def method2() end end Mod.instance_methods #=> [:method2] Mod.private_instance_methods #=> [:method1]
VALUE rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i); }
Returns true
if the named private method is defined by _ mod_
(or its included modules and, if mod is a class, its ancestors).
module A def method1() end end class B private def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.private_method_defined? "method1" #=> false C.private_method_defined? "method2" #=> true C.method_defined? "method2" #=> false
static VALUE rb_mod_private_method_defined(VALUE mod, VALUE mid) { return check_definition(mod, rb_to_id(mid), NOEX_PRIVATE); }
Returns a list of the protected instance methods defined in mod.
If the optional parameter is not false
, the methods of any
ancestors are included.
VALUE rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i); }
Returns true
if the named protected method is defined by
mod (or its included modules and, if mod is a class, its
ancestors).
module A def method1() end end class B protected def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.protected_method_defined? "method1" #=> false C.protected_method_defined? "method2" #=> true C.method_defined? "method2" #=> true
static VALUE rb_mod_protected_method_defined(VALUE mod, VALUE mid) { return check_definition(mod, rb_to_id(mid), NOEX_PROTECTED); }
Makes a list of existing class methods public.
static VALUE rb_mod_public_method(int argc, VALUE *argv, VALUE obj) { set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PUBLIC); return obj; }
Similar to instance_method, searches public method only.
static VALUE rb_mod_public_instance_method(VALUE mod, VALUE vid) { return mnew(mod, Qundef, rb_to_id(vid), rb_cUnboundMethod, TRUE); }
Returns a list of the public instance methods defined in mod. If
the optional parameter is not false
, the methods of any
ancestors are included.
VALUE rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i); }
Returns true
if the named public method is defined by
mod (or its included modules and, if mod is a class, its
ancestors).
module A def method1() end end class B protected def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.public_method_defined? "method1" #=> true C.public_method_defined? "method2" #=> false C.method_defined? "method2" #=> true
static VALUE rb_mod_public_method_defined(VALUE mod, VALUE mid) { return check_definition(mod, rb_to_id(mid), NOEX_PUBLIC); }
Removes the definition of the sym, returning that constant's value.
class Dummy @@var = 99 puts @@var remove_class_variable(:@@var) p(defined? @@var) end
produces:
99 nil
VALUE rb_mod_remove_cvar(VALUE mod, VALUE name) { const ID id = rb_to_id(name); st_data_t val, n = id; if (!rb_is_class_id(id)) { rb_name_error(id, "wrong class variable name %s", rb_id2name(id)); } if (!OBJ_UNTRUSTED(mod) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't remove class variable"); rb_check_frozen(mod); if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) { return (VALUE)val; } if (rb_cvar_defined(mod, id)) { rb_name_error(id, "cannot remove %s for %s", rb_id2name(id), rb_class2name(mod)); } rb_name_error(id, "class variable %s not defined for %s", rb_id2name(id), rb_class2name(mod)); return Qnil; /* not reached */ }
Return a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.
static VALUE rb_mod_to_s(VALUE klass) { if (FL_TEST(klass, FL_SINGLETON)) { VALUE s = rb_usascii_str_new2("#<"); VALUE v = rb_iv_get(klass, "__attached__"); rb_str_cat2(s, "Class:"); switch (TYPE(v)) { case T_CLASS: case T_MODULE: rb_str_append(s, rb_inspect(v)); break; default: rb_str_append(s, rb_any_to_s(v)); break; } rb_str_cat2(s, ">"); return s; } return rb_str_dup(rb_class_name(klass)); }
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod alias_method :orig_exit, :exit def exit(code=0) puts "Exiting with code #{code}" orig_exit(code) end end include Mod exit(99)
produces:
Exiting with code 99
static VALUE rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname) { rb_alias(mod, rb_to_id(newname), rb_to_id(oldname)); return mod; }
When this module is included in another, Ruby calls
append_features
in this module, passing it the receiving
module in mod. Ruby’s default implementation is to add the
constants, methods, and module variables of this module to mod if
this module has not already been added to mod or one of its
ancestors. See also Module#include
.
static VALUE rb_mod_append_features(VALUE module, VALUE include) { switch (TYPE(include)) { case T_CLASS: case T_MODULE: break; default: Check_Type(include, T_CLASS); break; } rb_include_module(include, module); return module; }
VALUE rb_mod_attr(int argc, VALUE *argv, VALUE klass) { if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) { rb_warning("optional boolean argument is obsoleted"); rb_attr(klass, rb_to_id(argv[0]), 1, RTEST(argv[1]), TRUE); return Qnil; } return rb_mod_attr_reader(argc, argv, klass); }
Defines a named attribute for this module, where the name is
symbol.id2name
, creating an instance variable
(@name
) and a corresponding access method to read it. Also
creates a method called name=
to set the attribute.
module Mod attr_accessor(:one, :two) end Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
static VALUE rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i<argc; i++) { rb_attr(klass, rb_to_id(argv[i]), TRUE, TRUE, TRUE); } return Qnil; }
Creates instance variables and corresponding methods that return the value
of each instance variable. Equivalent to calling
“attr
:name” on each name in turn.
static VALUE rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i<argc; i++) { rb_attr(klass, rb_to_id(argv[i]), TRUE, FALSE, TRUE); } return Qnil; }
Creates an accessor method to allow assignment to the attribute
aSymbol.id2name
.
static VALUE rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i<argc; i++) { rb_attr(klass, rb_to_id(argv[i]), FALSE, TRUE, TRUE); } return Qnil; }
Defines an instance method in the receiver. The method parameter
can be a Proc
, a Method
or an
UnboundMethod
object. If a block is specified, it is used as
the method body. This block is evaluated using instance_eval
,
a point that is tricky to demonstrate because define_method
is
private. (This is why we resort to the send
hack in this
example.)
class A def fred puts "In Fred" end def create_method(name, &block) self.class.send(:define_method, name, &block) end define_method(:wilma) { puts "Charge it!" } end class B < A define_method(:barney, instance_method(:fred)) end a = B.new a.barney a.wilma a.create_method(:betty) { p self } a.betty
produces:
In Fred Charge it! #<B:0x401b39e8>
static VALUE rb_mod_define_method(int argc, VALUE *argv, VALUE mod) { ID id; VALUE body; int noex = NOEX_PUBLIC; if (argc == 1) { id = rb_to_id(argv[0]); body = rb_block_lambda(); } else if (argc == 2) { id = rb_to_id(argv[0]); body = argv[1]; if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) { rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Method)", rb_obj_classname(body)); } } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for 1)", argc); } if (rb_obj_is_method(body)) { struct METHOD *method = (struct METHOD *)DATA_PTR(body); VALUE rclass = method->rclass; if (rclass != mod && !RTEST(rb_class_inherited_p(mod, rclass))) { if (FL_TEST(rclass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't bind singleton method to a different class"); } else { rb_raise(rb_eTypeError, "bind argument must be a subclass of %s", rb_class2name(rclass)); } } rb_method_entry_set(mod, id, method->me, noex); } else if (rb_obj_is_proc(body)) { rb_proc_t *proc; body = proc_dup(body); GetProcPtr(body, proc); if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) { proc->block.iseq->defined_method_id = id; proc->block.iseq->klass = mod; proc->is_lambda = TRUE; proc->is_from_method = TRUE; } rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex); } else { /* type error */ rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)"); } return body; }
Extends the specified object by adding this module’s constants and methods
(which are added as singleton methods). This is the callback method used by
Object#extend
.
module Picky def Picky.extend_object(o) if String === o puts "Can't add Picky to a String" else puts "Picky added to #{o.class}" super end end end (s = Array.new).extend Picky # Call Object.extend (s = "quick brown fox").extend Picky
produces:
Picky added to Array Can't add Picky to a String
static VALUE rb_mod_extend_object(VALUE mod, VALUE obj) { rb_extend_object(obj, mod); return obj; }
Invokes Module.append_features
on each parameter in reverse
order.
static VALUE rb_mod_include(int argc, VALUE *argv, VALUE module) { int i; for (i = 0; i < argc; i++) Check_Type(argv[i], T_MODULE); while (argc--) { rb_funcall(argv[argc], rb_intern("append_features"), 1, module); rb_funcall(argv[argc], rb_intern("included"), 1, module); } return module; }
Callback invoked whenever the receiver is included in another module or
class. This should be used in preference to
Module.append_features
if your code wants to perform some
action when a module is included in another.
module A def A.included(mod) puts "#{self} included in #{mod}" end end module Enumerable include A end
static VALUE rb_obj_dummy(void) { return Qnil; }
Invoked as a callback whenever an instance method is added to the receiver.
module Chatty def self.method_added(method_name) puts "Adding #{method_name.inspect}" end def self.some_class_method() end def some_instance_method() end end
produces:
Adding :some_instance_method
static VALUE rb_obj_dummy(void) { return Qnil; }
Invoked as a callback whenever an instance method is removed from the receiver.
module Chatty def self.method_removed(method_name) puts "Removing #{method_name.inspect}" end def self.some_class_method() end def some_instance_method() end class << self remove_method :some_class_method end remove_method :some_instance_method end
produces:
Removing :some_instance_method
static VALUE rb_obj_dummy(void) { return Qnil; }
Not documented
static VALUE rb_obj_dummy(void) { return Qnil; }
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions.
module Mod def one "This is one" end module_function :one end class Cls include Mod def call_one one end end Mod.one #=> "This is one" c = Cls.new c.call_one #=> "This is one" module Mod def one "This is the new one" end end Mod.one #=> "This is one" c.call_one #=> "This is the new one"
static VALUE rb_mod_modfunc(int argc, VALUE *argv, VALUE module) { int i; ID id; const rb_method_entry_t *me; if (TYPE(module) != T_MODULE) { rb_raise(rb_eTypeError, "module_function must be called for modules"); } secure_visibility(module); if (argc == 0) { SCOPE_SET(NOEX_MODFUNC); return module; } set_method_visibility(module, argc, argv, NOEX_PRIVATE); for (i = 0; i < argc; i++) { VALUE m = module; id = rb_to_id(argv[i]); for (;;) { me = search_method(m, id); if (me == 0) { me = search_method(rb_cObject, id); } if (UNDEFINED_METHOD_ENTRY_P(me)) { rb_print_undef(module, id, 0); } if (me->def->type != VM_METHOD_TYPE_ZSUPER) { break; /* normal case: need not to follow 'super' link */ } m = RCLASS_SUPER(m); if (!m) break; } rb_method_entry_set(rb_singleton_class(module), id, me, NOEX_PUBLIC); } return module; }
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility.
module Mod def a() end def b() end private def c() end private :a end Mod.private_instance_methods #=> [:a, :c]
static VALUE rb_mod_private(int argc, VALUE *argv, VALUE module) { secure_visibility(module); if (argc == 0) { SCOPE_SET(NOEX_PRIVATE); } else { set_method_visibility(module, argc, argv, NOEX_PRIVATE); } return module; }
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility.
static VALUE rb_mod_protected(int argc, VALUE *argv, VALUE module) { secure_visibility(module); if (argc == 0) { SCOPE_SET(NOEX_PROTECTED); } else { set_method_visibility(module, argc, argv, NOEX_PROTECTED); } return module; }
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility.
static VALUE rb_mod_public(int argc, VALUE *argv, VALUE module) { secure_visibility(module); if (argc == 0) { SCOPE_SET(NOEX_PUBLIC); } else { set_method_visibility(module, argc, argv, NOEX_PUBLIC); } return module; }
Removes the definition of the given constant, returning that constant's previous value. If that constant referred to a module, this will not change that module's name and can lead to confusion.
VALUE rb_mod_remove_const(VALUE mod, VALUE name) { const ID id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "`%s' is not allowed as a constant name", rb_id2name(id)); } return rb_const_remove(mod, id); }
Removes the method identified by symbol from the current class.
For an example, see Module.undef_method
.
static VALUE rb_mod_remove_method(int argc, VALUE *argv, VALUE mod) { int i; for (i = 0; i < argc; i++) { remove_method(mod, rb_to_id(argv[i])); } return mod; }
Prevents the current class from responding to calls to the named method.
Contrast this with remove_method
, which deletes the method
from the particular class; Ruby will still search superclasses and mixed-in
modules for a possible receiver.
class Parent def hello puts "In parent" end end class Child < Parent def hello puts "In child" end end c = Child.new c.hello class Child remove_method :hello # remove from child, still in parent end c.hello class Child undef_method :hello # prevent any calls to 'hello' end c.hello
produces:
In child In parent prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
static VALUE rb_mod_undef_method(int argc, VALUE *argv, VALUE mod) { int i; for (i = 0; i < argc; i++) { rb_undef(mod, rb_to_id(argv[i])); } return mod; }