<link rel="stylesheet" href="../../noscript1.34.1.css">

1.0.0[][src]Trait std::iter::FromIterator

pub trait FromIterator<A> {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = A>
; }

Conversion from an Iterator.

By implementing FromIterator for a type, you define how it will be created from an iterator. This is common for types which describe a collection of some kind.

FromIterator's from_iter is rarely called explicitly, and is instead used through Iterator's collect method. See collect's documentation for more examples.

See also: IntoIterator.

Examples

Basic usage:

use std::iter::FromIterator;

let five_fives = std::iter::repeat(5).take(5);

let v = Vec::from_iter(five_fives);

assert_eq!(v, vec![5, 5, 5, 5, 5]);Run

Using collect to implicitly use FromIterator:

let five_fives = std::iter::repeat(5).take(5);

let v: Vec<i32> = five_fives.collect();

assert_eq!(v, vec![5, 5, 5, 5, 5]);Run

Implementing FromIterator for your type:

use std::iter::FromIterator;

// A sample collection, that's just a wrapper over Vec<T>
#[derive(Debug)]
struct MyCollection(Vec<i32>);

// Let's give it some methods so we can create one and add things
// to it.
impl MyCollection {
    fn new() -> MyCollection {
        MyCollection(Vec::new())
    }

    fn add(&mut self, elem: i32) {
        self.0.push(elem);
    }
}

// and we'll implement FromIterator
impl FromIterator<i32> for MyCollection {
    fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
        let mut c = MyCollection::new();

        for i in iter {
            c.add(i);
        }

        c
    }
}

// Now we can make a new iterator...
let iter = (0..5).into_iter();

// ... and make a MyCollection out of it
let c = MyCollection::from_iter(iter);

assert_eq!(c.0, vec![0, 1, 2, 3, 4]);

// collect works too!

let iter = (0..5).into_iter();
let c: MyCollection = iter.collect();

assert_eq!(c.0, vec![0, 1, 2, 3, 4]);Run

Required methods

fn from_iter<T>(iter: T) -> Self where
    T: IntoIterator<Item = A>, 

Creates a value from an iterator.

See the module-level documentation for more.

Examples

Basic usage:

use std::iter::FromIterator;

let five_fives = std::iter::repeat(5).take(5);

let v = Vec::from_iter(five_fives);

assert_eq!(v, vec![5, 5, 5, 5, 5]);Run
Loading content...

Implementors

impl FromIterator<char> for String[src]

impl FromIterator<()> for ()[src]

Collapses all unit items from an iterator into one.

This is more useful when combined with higher-level abstractions, like collecting to a Result<(), E> where you only care about errors:

use std::io::*;
let data = vec![1, 2, 3, 4, 5];
let res: Result<()> = data.iter()
    .map(|x| writeln!(stdout(), "{}", x))
    .collect();
assert!(res.is_ok());Run

impl FromIterator<String> for String[src]

impl<'a> FromIterator<&'a char> for String[src]

impl<'a> FromIterator<&'a str> for String[src]

impl<'a> FromIterator<Cow<'a, str>> for String[src]

impl<'a> FromIterator<char> for Cow<'a, str>[src]

impl<'a> FromIterator<String> for Cow<'a, str>[src]

impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str>[src]

impl<'a, T> FromIterator<T> for Cow<'a, [T]> where
    T: Clone
[src]

impl<A> FromIterator<A> for Box<[A]>[src]

impl<A> FromIterator<A> for VecDeque<A>[src]

impl<A, E, V> FromIterator<Result<A, E>> for Result<V, E> where
    V: FromIterator<A>, 
[src]

fn from_iter<I>(iter: I) -> Result<V, E> where
    I: IntoIterator<Item = Result<A, E>>, 
[src]

Takes each element in the Iterator: if it is an Err, no further elements are taken, and the Err is returned. Should no Err occur, a container with the values of each Result is returned.

Here is an example which increments every integer in a vector, checking for overflow:

let v = vec![1, 2];
let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
    x.checked_add(1).ok_or("Overflow!")
).collect();
assert!(res == Ok(vec![2, 3]));Run

impl<A, V> FromIterator<Option<A>> for Option<V> where
    V: FromIterator<A>, 
[src]

fn from_iter<I>(iter: I) -> Option<V> where
    I: IntoIterator<Item = Option<A>>, 
[src]

Takes each element in the Iterator: if it is None, no further elements are taken, and the None is returned. Should no None occur, a container with the values of each Option is returned.

Examples

Here is an example which increments every integer in a vector. We use the checked variant ofaddthat returnsNone` when the calculation would result in an overflow.

let items = vec![0_u16, 1, 2];

let res: Option<Vec<u16>> = items
    .iter()
    .map(|x| x.checked_add(1))
    .collect();

assert_eq!(res, Some(vec![1, 2, 3]));Run

As you can see, this will return the expected, valid items.

Here is another example that tries to subtract one from another list of integers, this time checking for underflow:

let items = vec![2_u16, 1, 0];

let res: Option<Vec<u16>> = items
    .iter()
    .map(|x| x.checked_sub(1))
    .collect();

assert_eq!(res, None);Run

Since the last element is zero, it would underflow. Thus, the resulting value is None.

impl<K, V> FromIterator<(K, V)> for BTreeMap<K, V> where
    K: Ord
[src]

impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where
    K: Eq + Hash,
    S: BuildHasher + Default
[src]

impl<P: AsRef<Path>> FromIterator<P> for PathBuf[src]

impl<T> FromIterator<T> for BinaryHeap<T> where
    T: Ord
[src]

impl<T> FromIterator<T> for BTreeSet<T> where
    T: Ord
[src]

impl<T> FromIterator<T> for LinkedList<T>[src]

impl<T> FromIterator<T> for Vec<T>[src]

impl<T, S> FromIterator<T> for HashSet<T, S> where
    T: Eq + Hash,
    S: BuildHasher + Default
[src]

Loading content...