1.0.0[−][src]Trait std::iter::FromIterator
Conversion from an Iterator
.
By implementing FromIterator
for a type, you define how it will be
created from an iterator. This is common for types which describe a
collection of some kind.
FromIterator
's from_iter
is rarely called explicitly, and is instead
used through Iterator
's collect
method. See collect
's
documentation for more examples.
See also: IntoIterator
.
Examples
Basic usage:
use std::iter::FromIterator; let five_fives = std::iter::repeat(5).take(5); let v = Vec::from_iter(five_fives); assert_eq!(v, vec![5, 5, 5, 5, 5]);Run
Using collect
to implicitly use FromIterator
:
let five_fives = std::iter::repeat(5).take(5); let v: Vec<i32> = five_fives.collect(); assert_eq!(v, vec![5, 5, 5, 5, 5]);Run
Implementing FromIterator
for your type:
use std::iter::FromIterator; // A sample collection, that's just a wrapper over Vec<T> #[derive(Debug)] struct MyCollection(Vec<i32>); // Let's give it some methods so we can create one and add things // to it. impl MyCollection { fn new() -> MyCollection { MyCollection(Vec::new()) } fn add(&mut self, elem: i32) { self.0.push(elem); } } // and we'll implement FromIterator impl FromIterator<i32> for MyCollection { fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self { let mut c = MyCollection::new(); for i in iter { c.add(i); } c } } // Now we can make a new iterator... let iter = (0..5).into_iter(); // ... and make a MyCollection out of it let c = MyCollection::from_iter(iter); assert_eq!(c.0, vec![0, 1, 2, 3, 4]); // collect works too! let iter = (0..5).into_iter(); let c: MyCollection = iter.collect(); assert_eq!(c.0, vec![0, 1, 2, 3, 4]);Run
Required methods
fn from_iter<T>(iter: T) -> Self where
T: IntoIterator<Item = A>,
T: IntoIterator<Item = A>,
Creates a value from an iterator.
See the module-level documentation for more.
Examples
Basic usage:
use std::iter::FromIterator; let five_fives = std::iter::repeat(5).take(5); let v = Vec::from_iter(five_fives); assert_eq!(v, vec![5, 5, 5, 5, 5]);Run
Implementors
impl FromIterator<char> for String
[src]
impl FromIterator<()> for ()
[src]
Collapses all unit items from an iterator into one.
This is more useful when combined with higher-level abstractions, like
collecting to a Result<(), E>
where you only care about errors:
use std::io::*; let data = vec![1, 2, 3, 4, 5]; let res: Result<()> = data.iter() .map(|x| writeln!(stdout(), "{}", x)) .collect(); assert!(res.is_ok());Run
impl FromIterator<String> for String
[src]
impl<'a> FromIterator<&'a char> for String
[src]
impl<'a> FromIterator<&'a str> for String
[src]
impl<'a> FromIterator<Cow<'a, str>> for String
[src]
impl<'a> FromIterator<char> for Cow<'a, str>
[src]
impl<'a> FromIterator<String> for Cow<'a, str>
[src]
impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str>
[src]
impl<'a, T> FromIterator<T> for Cow<'a, [T]> where
T: Clone,
[src]
T: Clone,
impl<A> FromIterator<A> for Box<[A]>
[src]
ⓘImportant traits for Box<I>fn from_iter<T>(iter: T) -> Box<[A]> where
T: IntoIterator<Item = A>,
[src]
T: IntoIterator<Item = A>,
impl<A> FromIterator<A> for VecDeque<A>
[src]
impl<A, E, V> FromIterator<Result<A, E>> for Result<V, E> where
V: FromIterator<A>,
[src]
V: FromIterator<A>,
fn from_iter<I>(iter: I) -> Result<V, E> where
I: IntoIterator<Item = Result<A, E>>,
[src]
I: IntoIterator<Item = Result<A, E>>,
Takes each element in the Iterator
: if it is an Err
, no further
elements are taken, and the Err
is returned. Should no Err
occur, a
container with the values of each Result
is returned.
Here is an example which increments every integer in a vector, checking for overflow:
let v = vec![1, 2]; let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| x.checked_add(1).ok_or("Overflow!") ).collect(); assert!(res == Ok(vec![2, 3]));Run
impl<A, V> FromIterator<Option<A>> for Option<V> where
V: FromIterator<A>,
[src]
V: FromIterator<A>,
fn from_iter<I>(iter: I) -> Option<V> where
I: IntoIterator<Item = Option<A>>,
[src]
I: IntoIterator<Item = Option<A>>,
Takes each element in the Iterator
: if it is None
,
no further elements are taken, and the None
is
returned. Should no None
occur, a container with the
values of each Option
is returned.
Examples
Here is an example which increments every integer in a vector.
We use the checked variant of
addthat returns
None` when the
calculation would result in an overflow.
let items = vec![0_u16, 1, 2]; let res: Option<Vec<u16>> = items .iter() .map(|x| x.checked_add(1)) .collect(); assert_eq!(res, Some(vec![1, 2, 3]));Run
As you can see, this will return the expected, valid items.
Here is another example that tries to subtract one from another list of integers, this time checking for underflow:
let items = vec![2_u16, 1, 0]; let res: Option<Vec<u16>> = items .iter() .map(|x| x.checked_sub(1)) .collect(); assert_eq!(res, None);Run
Since the last element is zero, it would underflow. Thus, the resulting
value is None
.
impl<K, V> FromIterator<(K, V)> for BTreeMap<K, V> where
K: Ord,
[src]
K: Ord,
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where
K: Eq + Hash,
S: BuildHasher + Default,
[src]
K: Eq + Hash,
S: BuildHasher + Default,
impl<P: AsRef<Path>> FromIterator<P> for PathBuf
[src]
impl<T> FromIterator<T> for BinaryHeap<T> where
T: Ord,
[src]
T: Ord,
impl<T> FromIterator<T> for BTreeSet<T> where
T: Ord,
[src]
T: Ord,
impl<T> FromIterator<T> for LinkedList<T>
[src]
impl<T> FromIterator<T> for Vec<T>
[src]
impl<T, S> FromIterator<T> for HashSet<T, S> where
T: Eq + Hash,
S: BuildHasher + Default,
[src]
T: Eq + Hash,
S: BuildHasher + Default,