1.0.0[−]Primitive Type u32
The 32-bit unsigned integer type.
Methods
impl u32
[src]
pub const fn min_value() -> u32
[src]
Returns the smallest value that can be represented by this integer type.
Examples
Basic usage:
assert_eq!(u32::min_value(), 0);Run
pub const fn max_value() -> u32
[src]
Returns the largest value that can be represented by this integer type.
Examples
Basic usage:
assert_eq!(u32::max_value(), 4294967295);Run
pub fn from_str_radix(src: &str, radix: u32) -> Result<u32, ParseIntError>
[src]
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
sign
followed by digits.
Leading and trailing whitespace represent an error.
Digits are a subset of these characters, depending on radix
:
0-9
a-z
A-Z
Panics
This function panics if radix
is not in the range from 2 to 36.
Examples
Basic usage:
assert_eq!(u32::from_str_radix("A", 16), Ok(10));Run
pub const fn count_ones(self) -> u32
[src]
Returns the number of ones in the binary representation of self
.
Examples
Basic usage:
let n = 0b01001100u32; assert_eq!(n.count_ones(), 3);Run
pub const fn count_zeros(self) -> u32
[src]
Returns the number of zeros in the binary representation of self
.
Examples
Basic usage:
assert_eq!(u32::max_value().count_zeros(), 0);Run
pub const fn leading_zeros(self) -> u32
[src]
Returns the number of leading zeros in the binary representation of self
.
Examples
Basic usage:
let n = u32::max_value() >> 2; assert_eq!(n.leading_zeros(), 2);Run
pub const fn trailing_zeros(self) -> u32
[src]
Returns the number of trailing zeros in the binary representation
of self
.
Examples
Basic usage:
let n = 0b0101000u32; assert_eq!(n.trailing_zeros(), 3);Run
pub const fn rotate_left(self, n: u32) -> u32
[src]
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Please note this isn't the same operation as <<
!
Examples
Basic usage:
let n = 0x10000b3u32; let m = 0xb301; assert_eq!(n.rotate_left(8), m);Run
pub const fn rotate_right(self, n: u32) -> u32
[src]
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn't the same operation as >>
!
Examples
Basic usage:
let n = 0xb301u32; let m = 0x10000b3; assert_eq!(n.rotate_right(8), m);Run
pub const fn swap_bytes(self) -> u32
[src]
Reverses the byte order of the integer.
Examples
Basic usage:
let n = 0x12345678u32; let m = n.swap_bytes(); assert_eq!(m, 0x78563412);Run
pub fn reverse_bits(self) -> u32
[src]
Reverses the bit pattern of the integer.
Examples
Basic usage:
#![feature(reverse_bits)] let n = 0x12345678u32; let m = n.reverse_bits(); assert_eq!(m, 0x1e6a2c48);Run
pub const fn from_be(x: u32) -> u32
[src]
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au32; if cfg!(target_endian = "big") { assert_eq!(u32::from_be(n), n) } else { assert_eq!(u32::from_be(n), n.swap_bytes()) }Run
pub const fn from_le(x: u32) -> u32
[src]
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au32; if cfg!(target_endian = "little") { assert_eq!(u32::from_le(n), n) } else { assert_eq!(u32::from_le(n), n.swap_bytes()) }Run
pub const fn to_be(self) -> u32
[src]
Converts self
to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au32; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }Run
pub const fn to_le(self) -> u32
[src]
Converts self
to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au32; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }Run
pub fn checked_add(self, rhs: u32) -> Option<u32>
[src]
Checked integer addition. Computes self + rhs
, returning None
if overflow occurred.
Examples
Basic usage:
assert_eq!((u32::max_value() - 2).checked_add(1), Some(u32::max_value() - 1)); assert_eq!((u32::max_value() - 2).checked_add(3), None);Run
pub fn checked_sub(self, rhs: u32) -> Option<u32>
[src]
Checked integer subtraction. Computes self - rhs
, returning
None
if overflow occurred.
Examples
Basic usage:
assert_eq!(1u32.checked_sub(1), Some(0)); assert_eq!(0u32.checked_sub(1), None);Run
pub fn checked_mul(self, rhs: u32) -> Option<u32>
[src]
Checked integer multiplication. Computes self * rhs
, returning
None
if overflow occurred.
Examples
Basic usage:
assert_eq!(5u32.checked_mul(1), Some(5)); assert_eq!(u32::max_value().checked_mul(2), None);Run
pub fn checked_div(self, rhs: u32) -> Option<u32>
[src]
Checked integer division. Computes self / rhs
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(128u32.checked_div(2), Some(64)); assert_eq!(1u32.checked_div(0), None);Run
pub fn checked_div_euclid(self, rhs: u32) -> Option<u32>
[src]
Checked Euclidean division. Computes self.div_euclid(rhs)
, returning None
if rhs == 0
.
Examples
Basic usage:
#![feature(euclidean_division)] assert_eq!(128u32.checked_div_euclid(2), Some(64)); assert_eq!(1u32.checked_div_euclid(0), None);Run
pub fn checked_rem(self, rhs: u32) -> Option<u32>
1.7.0[src]
Checked integer remainder. Computes self % rhs
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(5u32.checked_rem(2), Some(1)); assert_eq!(5u32.checked_rem(0), None);Run
pub fn checked_rem_euclid(self, rhs: u32) -> Option<u32>
[src]
Checked Euclidean modulo. Computes self.rem_euclid(rhs)
, returning None
if rhs == 0
.
Examples
Basic usage:
#![feature(euclidean_division)] assert_eq!(5u32.checked_rem_euclid(2), Some(1)); assert_eq!(5u32.checked_rem_euclid(0), None);Run
pub fn checked_neg(self) -> Option<u32>
1.7.0[src]
Checked negation. Computes -self
, returning None
unless self == 0
.
Note that negating any positive integer will overflow.
Examples
Basic usage:
assert_eq!(0u32.checked_neg(), Some(0)); assert_eq!(1u32.checked_neg(), None);Run
pub fn checked_shl(self, rhs: u32) -> Option<u32>
1.7.0[src]
Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
assert_eq!(0x1u32.checked_shl(4), Some(0x10)); assert_eq!(0x10u32.checked_shl(129), None);Run
pub fn checked_shr(self, rhs: u32) -> Option<u32>
1.7.0[src]
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
assert_eq!(0x10u32.checked_shr(4), Some(0x1)); assert_eq!(0x10u32.checked_shr(129), None);Run
pub fn checked_pow(self, exp: u32) -> Option<u32>
1.34.0[src]
Checked exponentiation. Computes self.pow(exp)
, returning None
if
overflow occurred.
Examples
Basic usage:
assert_eq!(2u32.checked_pow(5), Some(32)); assert_eq!(u32::max_value().checked_pow(2), None);Run
pub fn saturating_add(self, rhs: u32) -> u32
[src]
Saturating integer addition. Computes self + rhs
, saturating at
the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(100u32.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255);Run
pub fn saturating_sub(self, rhs: u32) -> u32
[src]
Saturating integer subtraction. Computes self - rhs
, saturating
at the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(100u32.saturating_sub(27), 73); assert_eq!(13u32.saturating_sub(127), 0);Run
pub fn saturating_mul(self, rhs: u32) -> u32
1.7.0[src]
Saturating integer multiplication. Computes self * rhs
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
use std::u32; assert_eq!(2u32.saturating_mul(10), 20); assert_eq!((u32::MAX).saturating_mul(10), u32::MAX);Run
pub fn saturating_pow(self, exp: u32) -> u32
1.34.0[src]
Saturating integer exponentiation. Computes self.pow(exp)
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
use std::u32; assert_eq!(4u32.saturating_pow(3), 64); assert_eq!(u32::MAX.saturating_pow(2), u32::MAX);Run
pub const fn wrapping_add(self, rhs: u32) -> u32
[src]
Wrapping (modular) addition. Computes self + rhs
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(200u32.wrapping_add(55), 255); assert_eq!(200u32.wrapping_add(u32::max_value()), 199);Run
pub const fn wrapping_sub(self, rhs: u32) -> u32
[src]
Wrapping (modular) subtraction. Computes self - rhs
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(100u32.wrapping_sub(100), 0); assert_eq!(100u32.wrapping_sub(u32::max_value()), 101);Run
pub const fn wrapping_mul(self, rhs: u32) -> u32
[src]
Wrapping (modular) multiplication. Computes self * rhs
, wrapping around at the boundary of the type.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u8
is used here.
assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);Run
pub fn wrapping_div(self, rhs: u32) -> u32
1.2.0[src]
Wrapping (modular) division. Computes self / rhs
.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100u32.wrapping_div(10), 10);Run
pub fn wrapping_div_euclid(self, rhs: u32) -> u32
[src]
Wrapping Euclidean division. Computes self.div_euclid(rhs)
.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_div(rhs)
.
Examples
Basic usage:
#![feature(euclidean_division)] assert_eq!(100u32.wrapping_div_euclid(10), 10);Run
pub fn wrapping_rem(self, rhs: u32) -> u32
1.2.0[src]
Wrapping (modular) remainder. Computes self % rhs
.
Wrapped remainder calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100u32.wrapping_rem(10), 0);Run
pub fn wrapping_rem_euclid(self, rhs: u32) -> u32
[src]
Wrapping Euclidean modulo. Computes self.rem_euclid(rhs)
.
Wrapped modulo calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_rem(rhs)
.
Examples
Basic usage:
#![feature(euclidean_division)] assert_eq!(100u32.wrapping_rem_euclid(10), 0);Run
pub const fn wrapping_neg(self) -> u32
1.2.0[src]
Wrapping (modular) negation. Computes -self
,
wrapping around at the boundary of the type.
Since unsigned types do not have negative equivalents
all applications of this function will wrap (except for -0
).
For values smaller than the corresponding signed type's maximum
the result is the same as casting the corresponding signed value.
Any larger values are equivalent to MAX + 1 - (val - MAX - 1)
where
MAX
is the corresponding signed type's maximum.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why i8
is used here.
assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);Run
pub const fn wrapping_shl(self, rhs: u32) -> u32
1.2.0[src]
Panic-free bitwise shift-left; yields self << mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left
function, which may
be what you want instead.
Examples
Basic usage:
assert_eq!(1u32.wrapping_shl(7), 128); assert_eq!(1u32.wrapping_shl(128), 1);Run
pub const fn wrapping_shr(self, rhs: u32) -> u32
1.2.0[src]
Panic-free bitwise shift-right; yields self >> mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right
function, which may
be what you want instead.
Examples
Basic usage:
assert_eq!(128u32.wrapping_shr(7), 1); assert_eq!(128u32.wrapping_shr(128), 128);Run
pub fn wrapping_pow(self, exp: u32) -> u32
1.34.0[src]
Wrapping (modular) exponentiation. Computes self.pow(exp)
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(3u32.wrapping_pow(5), 243); assert_eq!(3u8.wrapping_pow(6), 217);Run
pub const fn overflowing_add(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
use std::u32; assert_eq!(5u32.overflowing_add(2), (7, false)); assert_eq!(u32::MAX.overflowing_add(1), (0, true));Run
pub const fn overflowing_sub(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
use std::u32; assert_eq!(5u32.overflowing_sub(2), (3, false)); assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true));Run
pub const fn overflowing_mul(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));Run
pub fn overflowing_div(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u32.overflowing_div(2), (2, false));Run
pub fn overflowing_div_euclid(self, rhs: u32) -> (u32, bool)
[src]
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.overflowing_div(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
#![feature(euclidean_division)] assert_eq!(5u32.overflowing_div_euclid(2), (2, false));Run
pub fn overflowing_rem(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u32.overflowing_rem(2), (1, false));Run
pub fn overflowing_rem_euclid(self, rhs: u32) -> (u32, bool)
[src]
Calculates the remainder self.rem_euclid(rhs)
as if by Euclidean division.
Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Since, for the positive integers, all common
definitions of division are equal, this operation
is exactly equal to self.overflowing_rem(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
#![feature(euclidean_division)] assert_eq!(5u32.overflowing_rem_euclid(2), (1, false));Run
pub const fn overflowing_neg(self) -> (u32, bool)
1.7.0[src]
Negates self in an overflowing fashion.
Returns !self + 1
using wrapping operations to return the value
that represents the negation of this unsigned value. Note that for
positive unsigned values overflow always occurs, but negating 0 does
not overflow.
Examples
Basic usage
assert_eq!(0u32.overflowing_neg(), (0, false)); assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true));Run
pub const fn overflowing_shl(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x1u32.overflowing_shl(4), (0x10, false)); assert_eq!(0x1u32.overflowing_shl(132), (0x10, true));Run
pub const fn overflowing_shr(self, rhs: u32) -> (u32, bool)
1.7.0[src]
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x10u32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u32.overflowing_shr(132), (0x1, true));Run
pub fn overflowing_pow(self, exp: u32) -> (u32, bool)
1.34.0[src]
Raises self to the power of exp
, using exponentiation by squaring.
Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.
Examples
Basic usage:
assert_eq!(3u32.overflowing_pow(5), (243, false)); assert_eq!(3u8.overflowing_pow(6), (217, true));Run
pub fn pow(self, exp: u32) -> u32
[src]
Raises self to the power of exp
, using exponentiation by squaring.
Examples
Basic usage:
assert_eq!(2u32.pow(5), 32);Run
pub fn div_euclid(self, rhs: u32) -> u32
[src]
Performs Euclidean division.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self / rhs
.
Examples
Basic usage:
#![feature(euclidean_division)] assert_eq!(7u32.div_euclid(4), 1); // or any other integer typeRun
pub fn rem_euclid(self, rhs: u32) -> u32
[src]
Calculates the least remainder of self (mod rhs)
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self % rhs
.
Examples
Basic usage:
#![feature(euclidean_division)] assert_eq!(7u32.rem_euclid(4), 3); // or any other integer typeRun
pub fn is_power_of_two(self) -> bool
[src]
Returns true
if and only if self == 2^k
for some k
.
Examples
Basic usage:
assert!(16u32.is_power_of_two()); assert!(!10u32.is_power_of_two());Run
pub fn next_power_of_two(self) -> u32
[src]
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), it panics in debug mode and return value is wrapped to 0 in
release mode (the only situation in which method can return 0).
Examples
Basic usage:
assert_eq!(2u32.next_power_of_two(), 2); assert_eq!(3u32.next_power_of_two(), 4);Run
pub fn checked_next_power_of_two(self) -> Option<u32>
[src]
Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type's maximum value,
None
is returned, otherwise the power of two is wrapped in Some
.
Examples
Basic usage:
assert_eq!(2u32.checked_next_power_of_two(), Some(2)); assert_eq!(3u32.checked_next_power_of_two(), Some(4)); assert_eq!(u32::max_value().checked_next_power_of_two(), None);Run
pub fn wrapping_next_power_of_two(self) -> u32
[src]
🔬 This is a nightly-only experimental API. (wrapping_next_power_of_two
#32463)
needs decision on wrapping behaviour
Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type's maximum value,
the return value is wrapped to 0
.
Examples
Basic usage:
#![feature(wrapping_next_power_of_two)] assert_eq!(2u32.wrapping_next_power_of_two(), 2); assert_eq!(3u32.wrapping_next_power_of_two(), 4); assert_eq!(u32::max_value().wrapping_next_power_of_two(), 0);Run
pub fn to_be_bytes(self) -> [u8; 4]
1.32.0[src]
Return the memory representation of this integer as a byte array in big-endian (network) byte order.
Examples
let bytes = 0x12345678u32.to_be_bytes(); assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]);Run
pub fn to_le_bytes(self) -> [u8; 4]
1.32.0[src]
Return the memory representation of this integer as a byte array in little-endian byte order.
Examples
let bytes = 0x12345678u32.to_le_bytes(); assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]);Run
pub fn to_ne_bytes(self) -> [u8; 4]
1.32.0[src]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform's native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate,
instead.
Examples
let bytes = 0x12345678u32.to_ne_bytes(); assert_eq!(bytes, if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78] } else { [0x78, 0x56, 0x34, 0x12] });Run
pub fn from_be_bytes(bytes: [u8; 4]) -> u32
1.32.0[src]
Create an integer value from its representation as a byte array in big endian.
Examples
let value = u32::from_be_bytes([0x12, 0x34, 0x56, 0x78]); assert_eq!(value, 0x12345678);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_be_u32(input: &mut &[u8]) -> u32 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u32>()); *input = rest; u32::from_be_bytes(int_bytes.try_into().unwrap()) }Run
pub fn from_le_bytes(bytes: [u8; 4]) -> u32
1.32.0[src]
Create an integer value from its representation as a byte array in little endian.
Examples
let value = u32::from_le_bytes([0x78, 0x56, 0x34, 0x12]); assert_eq!(value, 0x12345678);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_be_u32(input: &mut &[u8]) -> u32 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u32>()); *input = rest; u32::from_be_bytes(int_bytes.try_into().unwrap()) }Run
pub fn from_ne_bytes(bytes: [u8; 4]) -> u32
1.32.0[src]
Create an integer value from its memory representation as a byte array in native endianness.
As the target platform's native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
let value = u32::from_ne_bytes(if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78] } else { [0x78, 0x56, 0x34, 0x12] }); assert_eq!(value, 0x12345678);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_be_u32(input: &mut &[u8]) -> u32 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u32>()); *input = rest; u32::from_be_bytes(int_bytes.try_into().unwrap()) }Run
Trait Implementations
impl<'a> Div<&'a u32> for u32
[src]
type Output = <u32 as Div<u32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a u32) -> <u32 as Div<u32>>::Output
[src]
impl Div<u32> for u32
[src]
This operation rounds towards zero, truncating any fractional part of the exact result.
type Output = u32
The resulting type after applying the /
operator.
fn div(self, other: u32) -> u32
[src]
impl<'a, 'b> Div<&'a u32> for &'b u32
[src]
type Output = <u32 as Div<u32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a u32) -> <u32 as Div<u32>>::Output
[src]
impl<'a> Div<u32> for &'a u32
[src]
type Output = <u32 as Div<u32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: u32) -> <u32 as Div<u32>>::Output
[src]
impl<'a> BitXorAssign<&'a u32> for u32
1.22.0[src]
impl BitXorAssign<u32> for u32
1.8.0[src]
impl LowerHex for u32
[src]
impl BitOrAssign<u32> for u32
1.8.0[src]
impl<'a> BitOrAssign<&'a u32> for u32
1.22.0[src]
impl BitAndAssign<u32> for u32
1.8.0[src]
impl<'a> BitAndAssign<&'a u32> for u32
1.22.0[src]
impl Display for u32
[src]
impl Add<u32> for u32
[src]
type Output = u32
The resulting type after applying the +
operator.
fn add(self, other: u32) -> u32
[src]
impl<'a> Add<u32> for &'a u32
[src]
type Output = <u32 as Add<u32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: u32) -> <u32 as Add<u32>>::Output
[src]
impl<'a> Add<&'a u32> for u32
[src]
type Output = <u32 as Add<u32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a u32) -> <u32 as Add<u32>>::Output
[src]
impl<'a, 'b> Add<&'a u32> for &'b u32
[src]
type Output = <u32 as Add<u32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a u32) -> <u32 as Add<u32>>::Output
[src]
impl BitOr<u32> for u32
[src]
type Output = u32
The resulting type after applying the |
operator.
fn bitor(self, rhs: u32) -> u32
[src]
impl<'a> BitOr<&'a u32> for u32
[src]
type Output = <u32 as BitOr<u32>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: &'a u32) -> <u32 as BitOr<u32>>::Output
[src]
impl<'a, 'b> BitOr<&'a u32> for &'b u32
[src]
type Output = <u32 as BitOr<u32>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: &'a u32) -> <u32 as BitOr<u32>>::Output
[src]
impl<'a> BitOr<u32> for &'a u32
[src]
type Output = <u32 as BitOr<u32>>::Output
The resulting type after applying the |
operator.
fn bitor(self, other: u32) -> <u32 as BitOr<u32>>::Output
[src]
impl<'a> RemAssign<&'a u32> for u32
1.22.0[src]
impl RemAssign<u32> for u32
1.8.0[src]
impl<'a> DivAssign<&'a u32> for u32
1.22.0[src]
impl DivAssign<u32> for u32
1.8.0[src]
impl MulAssign<u32> for u32
1.8.0[src]
impl<'a> MulAssign<&'a u32> for u32
1.22.0[src]
impl<'a> SubAssign<&'a u32> for u32
1.22.0[src]
impl SubAssign<u32> for u32
1.8.0[src]
impl Clone for u32
[src]
fn clone(&self) -> u32
[src]
fn clone_from(&mut self, source: &Self)
[src]
Performs copy-assignment from source
. Read more
impl<'a> AddAssign<&'a u32> for u32
1.22.0[src]
impl AddAssign<u32> for u32
1.8.0[src]
impl PartialOrd<u32> for u32
[src]
fn partial_cmp(&self, other: &u32) -> Option<Ordering>
[src]
fn lt(&self, other: &u32) -> bool
[src]
fn le(&self, other: &u32) -> bool
[src]
fn ge(&self, other: &u32) -> bool
[src]
fn gt(&self, other: &u32) -> bool
[src]
impl Step for u32
[src]
fn steps_between(start: &u32, end: &u32) -> Option<usize>
[src]
fn add_usize(&self, n: usize) -> Option<u32>
[src]
fn replace_one(&mut self) -> u32
[src]
fn replace_zero(&mut self) -> u32
[src]
fn add_one(&self) -> u32
[src]
fn sub_one(&self) -> u32
[src]
impl<'a> ShrAssign<&'a u8> for u32
1.22.0[src]
impl<'a> ShrAssign<&'a u16> for u32
1.22.0[src]
impl ShrAssign<i16> for u32
1.8.0[src]
impl ShrAssign<i8> for u32
1.8.0[src]
impl<'a> ShrAssign<&'a u64> for u32
1.22.0[src]
impl<'a> ShrAssign<&'a u32> for u32
1.22.0[src]
impl<'a> ShrAssign<&'a u128> for u32
1.22.0[src]
impl<'a> ShrAssign<&'a i32> for u32
1.22.0[src]
impl ShrAssign<i64> for u32
1.8.0[src]
impl ShrAssign<i128> for u32
1.8.0[src]
impl ShrAssign<usize> for u32
1.8.0[src]
impl<'a> ShrAssign<&'a usize> for u32
1.22.0[src]
impl ShrAssign<u64> for u32
1.8.0[src]
impl ShrAssign<isize> for u32
1.8.0[src]
impl ShrAssign<i32> for u32
1.8.0[src]
impl<'a> ShrAssign<&'a i16> for u32
1.22.0[src]
impl ShrAssign<u16> for u32
1.8.0[src]
impl<'a> ShrAssign<&'a i8> for u32
1.22.0[src]
impl<'a> ShrAssign<&'a i64> for u32
1.22.0[src]
impl ShrAssign<u128> for u32
1.8.0[src]
impl<'a> ShrAssign<&'a isize> for u32
1.22.0[src]
impl ShrAssign<u8> for u32
1.8.0[src]
impl ShrAssign<u32> for u32
1.8.0[src]
impl<'a> ShrAssign<&'a i128> for u32
1.22.0[src]
impl Ord for u32
[src]
fn cmp(&self, other: &u32) -> Ordering
[src]
fn max(self, other: Self) -> Self
1.21.0[src]
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self
1.21.0[src]
Compares and returns the minimum of two values. Read more
impl Binary for u32
[src]
impl<'a> Sub<u32> for &'a u32
[src]
type Output = <u32 as Sub<u32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: u32) -> <u32 as Sub<u32>>::Output
[src]
impl Sub<u32> for u32
[src]
type Output = u32
The resulting type after applying the -
operator.
fn sub(self, other: u32) -> u32
[src]
impl<'a> Sub<&'a u32> for u32
[src]
type Output = <u32 as Sub<u32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a u32) -> <u32 as Sub<u32>>::Output
[src]
impl<'a, 'b> Sub<&'a u32> for &'b u32
[src]
type Output = <u32 as Sub<u32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a u32) -> <u32 as Sub<u32>>::Output
[src]
impl Eq for u32
[src]
impl Debug for u32
[src]
impl TryFrom<i64> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i64) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<isize> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: isize) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i16> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i16) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i8> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i8) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i32> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i32) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u64> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u64) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<usize> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: usize) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<i128> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: i128) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl TryFrom<u128> for u32
1.34.0[src]
type Error = TryFromIntError
The type returned in the event of a conversion error.
fn try_from(u: u128) -> Result<u32, TryFromIntError>
[src]
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
impl PartialEq<u32> for u32
[src]
impl<'a, 'b> Shr<&'a i16> for &'b u32
[src]
type Output = <u32 as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i16) -> <u32 as Shr<i16>>::Output
[src]
impl Shr<isize> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: isize) -> u32
[src]
impl<'a> Shr<&'a isize> for u32
[src]
type Output = <u32 as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a isize) -> <u32 as Shr<isize>>::Output
[src]
impl<'a, 'b> Shr<&'a usize> for &'b u32
[src]
type Output = <u32 as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a usize) -> <u32 as Shr<usize>>::Output
[src]
impl Shr<i8> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: i8) -> u32
[src]
impl<'a> Shr<&'a i8> for u32
[src]
type Output = <u32 as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i8) -> <u32 as Shr<i8>>::Output
[src]
impl<'a> Shr<u16> for &'a u32
[src]
type Output = <u32 as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u16) -> <u32 as Shr<u16>>::Output
[src]
impl<'a, 'b> Shr<&'a u32> for &'b u32
[src]
type Output = <u32 as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u32) -> <u32 as Shr<u32>>::Output
[src]
impl Shr<u32> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: u32) -> u32
[src]
impl<'a> Shr<i8> for &'a u32
[src]
type Output = <u32 as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i8) -> <u32 as Shr<i8>>::Output
[src]
impl<'a> Shr<u32> for &'a u32
[src]
type Output = <u32 as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u32) -> <u32 as Shr<u32>>::Output
[src]
impl<'a> Shr<&'a i32> for u32
[src]
type Output = <u32 as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i32) -> <u32 as Shr<i32>>::Output
[src]
impl Shr<i32> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: i32) -> u32
[src]
impl<'a> Shr<&'a usize> for u32
[src]
type Output = <u32 as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a usize) -> <u32 as Shr<usize>>::Output
[src]
impl Shr<u64> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: u64) -> u32
[src]
impl Shr<i16> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: i16) -> u32
[src]
impl<'a> Shr<u128> for &'a u32
[src]
type Output = <u32 as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u128) -> <u32 as Shr<u128>>::Output
[src]
impl<'a> Shr<isize> for &'a u32
[src]
type Output = <u32 as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: isize) -> <u32 as Shr<isize>>::Output
[src]
impl<'a> Shr<u8> for &'a u32
[src]
type Output = <u32 as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u8) -> <u32 as Shr<u8>>::Output
[src]
impl<'a, 'b> Shr<&'a u16> for &'b u32
[src]
type Output = <u32 as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u16) -> <u32 as Shr<u16>>::Output
[src]
impl Shr<usize> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: usize) -> u32
[src]
impl<'a, 'b> Shr<&'a isize> for &'b u32
[src]
type Output = <u32 as Shr<isize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a isize) -> <u32 as Shr<isize>>::Output
[src]
impl<'a> Shr<&'a u128> for u32
[src]
type Output = <u32 as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u128) -> <u32 as Shr<u128>>::Output
[src]
impl<'a, 'b> Shr<&'a i8> for &'b u32
[src]
type Output = <u32 as Shr<i8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i8) -> <u32 as Shr<i8>>::Output
[src]
impl<'a, 'b> Shr<&'a i64> for &'b u32
[src]
type Output = <u32 as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i64) -> <u32 as Shr<i64>>::Output
[src]
impl<'a> Shr<i128> for &'a u32
[src]
type Output = <u32 as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i128) -> <u32 as Shr<i128>>::Output
[src]
impl<'a> Shr<&'a i128> for u32
[src]
type Output = <u32 as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i128) -> <u32 as Shr<i128>>::Output
[src]
impl<'a, 'b> Shr<&'a u64> for &'b u32
[src]
type Output = <u32 as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u64) -> <u32 as Shr<u64>>::Output
[src]
impl Shr<u128> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: u128) -> u32
[src]
impl Shr<u16> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: u16) -> u32
[src]
impl<'a, 'b> Shr<&'a i32> for &'b u32
[src]
type Output = <u32 as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i32) -> <u32 as Shr<i32>>::Output
[src]
impl<'a, 'b> Shr<&'a u128> for &'b u32
[src]
type Output = <u32 as Shr<u128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u128) -> <u32 as Shr<u128>>::Output
[src]
impl<'a> Shr<i16> for &'a u32
[src]
type Output = <u32 as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i16) -> <u32 as Shr<i16>>::Output
[src]
impl Shr<u8> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: u8) -> u32
[src]
impl<'a> Shr<i32> for &'a u32
[src]
type Output = <u32 as Shr<i32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i32) -> <u32 as Shr<i32>>::Output
[src]
impl<'a> Shr<u64> for &'a u32
[src]
type Output = <u32 as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: u64) -> <u32 as Shr<u64>>::Output
[src]
impl<'a, 'b> Shr<&'a i128> for &'b u32
[src]
type Output = <u32 as Shr<i128>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i128) -> <u32 as Shr<i128>>::Output
[src]
impl<'a, 'b> Shr<&'a u8> for &'b u32
[src]
type Output = <u32 as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u8) -> <u32 as Shr<u8>>::Output
[src]
impl<'a> Shr<&'a u64> for u32
[src]
type Output = <u32 as Shr<u64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u64) -> <u32 as Shr<u64>>::Output
[src]
impl<'a> Shr<&'a i16> for u32
[src]
type Output = <u32 as Shr<i16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i16) -> <u32 as Shr<i16>>::Output
[src]
impl Shr<i64> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: i64) -> u32
[src]
impl<'a> Shr<usize> for &'a u32
[src]
type Output = <u32 as Shr<usize>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: usize) -> <u32 as Shr<usize>>::Output
[src]
impl<'a> Shr<&'a u32> for u32
[src]
type Output = <u32 as Shr<u32>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u32) -> <u32 as Shr<u32>>::Output
[src]
impl<'a> Shr<&'a u8> for u32
[src]
type Output = <u32 as Shr<u8>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u8) -> <u32 as Shr<u8>>::Output
[src]
impl Shr<i128> for u32
[src]
type Output = u32
The resulting type after applying the >>
operator.
fn shr(self, other: i128) -> u32
[src]
impl<'a> Shr<i64> for &'a u32
[src]
type Output = <u32 as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: i64) -> <u32 as Shr<i64>>::Output
[src]
impl<'a> Shr<&'a u16> for u32
[src]
type Output = <u32 as Shr<u16>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a u16) -> <u32 as Shr<u16>>::Output
[src]
impl<'a> Shr<&'a i64> for u32
[src]
type Output = <u32 as Shr<i64>>::Output
The resulting type after applying the >>
operator.
fn shr(self, other: &'a i64) -> <u32 as Shr<i64>>::Output
[src]
impl<'a> BitXor<u32> for &'a u32
[src]
type Output = <u32 as BitXor<u32>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: u32) -> <u32 as BitXor<u32>>::Output
[src]
impl<'a> BitXor<&'a u32> for u32
[src]
type Output = <u32 as BitXor<u32>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: &'a u32) -> <u32 as BitXor<u32>>::Output
[src]
impl BitXor<u32> for u32
[src]
type Output = u32
The resulting type after applying the ^
operator.
fn bitxor(self, other: u32) -> u32
[src]
impl<'a, 'b> BitXor<&'a u32> for &'b u32
[src]
type Output = <u32 as BitXor<u32>>::Output
The resulting type after applying the ^
operator.
fn bitxor(self, other: &'a u32) -> <u32 as BitXor<u32>>::Output
[src]
impl Not for u32
[src]
impl<'_> Not for &'_ u32
[src]
type Output = <u32 as Not>::Output
The resulting type after applying the !
operator.
fn not(self) -> <u32 as Not>::Output
[src]
impl<'a> Product<&'a u32> for u32
1.12.0[src]
impl Product<u32> for u32
1.12.0[src]
impl Copy for u32
[src]
impl<'a> Rem<u32> for &'a u32
[src]
type Output = <u32 as Rem<u32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: u32) -> <u32 as Rem<u32>>::Output
[src]
impl<'a, 'b> Rem<&'a u32> for &'b u32
[src]
type Output = <u32 as Rem<u32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a u32) -> <u32 as Rem<u32>>::Output
[src]
impl Rem<u32> for u32
[src]
This operation satisfies n % d == n - (n / d) * d
. The
result has the same sign as the left operand.
type Output = u32
The resulting type after applying the %
operator.
fn rem(self, other: u32) -> u32
[src]
impl<'a> Rem<&'a u32> for u32
[src]
type Output = <u32 as Rem<u32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a u32) -> <u32 as Rem<u32>>::Output
[src]
impl UpperHex for u32
[src]
impl<'a> Mul<&'a u32> for u32
[src]
type Output = <u32 as Mul<u32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a u32) -> <u32 as Mul<u32>>::Output
[src]
impl Mul<Duration> for u32
1.31.0[src]
type Output = Duration
The resulting type after applying the *
operator.
fn mul(self, rhs: Duration) -> Duration
[src]
impl Mul<u32> for u32
[src]
type Output = u32
The resulting type after applying the *
operator.
fn mul(self, other: u32) -> u32
[src]
impl<'a, 'b> Mul<&'a u32> for &'b u32
[src]
type Output = <u32 as Mul<u32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a u32) -> <u32 as Mul<u32>>::Output
[src]
impl<'a> Mul<u32> for &'a u32
[src]
type Output = <u32 as Mul<u32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: u32) -> <u32 as Mul<u32>>::Output
[src]
impl Octal for u32
[src]
impl<'a> Shl<&'a isize> for u32
[src]
type Output = <u32 as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a isize) -> <u32 as Shl<isize>>::Output
[src]
impl<'a> Shl<u16> for &'a u32
[src]
type Output = <u32 as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u16) -> <u32 as Shl<u16>>::Output
[src]
impl Shl<i64> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: i64) -> u32
[src]
impl<'a, 'b> Shl<&'a u16> for &'b u32
[src]
type Output = <u32 as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u16) -> <u32 as Shl<u16>>::Output
[src]
impl<'a> Shl<i16> for &'a u32
[src]
type Output = <u32 as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i16) -> <u32 as Shl<i16>>::Output
[src]
impl<'a> Shl<i8> for &'a u32
[src]
type Output = <u32 as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i8) -> <u32 as Shl<i8>>::Output
[src]
impl<'a, 'b> Shl<&'a i32> for &'b u32
[src]
type Output = <u32 as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i32) -> <u32 as Shl<i32>>::Output
[src]
impl<'a> Shl<&'a u8> for u32
[src]
type Output = <u32 as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u8) -> <u32 as Shl<u8>>::Output
[src]
impl Shl<usize> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: usize) -> u32
[src]
impl<'a> Shl<&'a i8> for u32
[src]
type Output = <u32 as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i8) -> <u32 as Shl<i8>>::Output
[src]
impl<'a> Shl<&'a i128> for u32
[src]
type Output = <u32 as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i128) -> <u32 as Shl<i128>>::Output
[src]
impl<'a> Shl<usize> for &'a u32
[src]
type Output = <u32 as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: usize) -> <u32 as Shl<usize>>::Output
[src]
impl<'a> Shl<u32> for &'a u32
[src]
type Output = <u32 as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u32) -> <u32 as Shl<u32>>::Output
[src]
impl<'a, 'b> Shl<&'a i64> for &'b u32
[src]
type Output = <u32 as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i64) -> <u32 as Shl<i64>>::Output
[src]
impl<'a, 'b> Shl<&'a usize> for &'b u32
[src]
type Output = <u32 as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a usize) -> <u32 as Shl<usize>>::Output
[src]
impl Shl<i32> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: i32) -> u32
[src]
impl<'a> Shl<&'a i64> for u32
[src]
type Output = <u32 as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i64) -> <u32 as Shl<i64>>::Output
[src]
impl<'a> Shl<&'a u32> for u32
[src]
type Output = <u32 as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u32) -> <u32 as Shl<u32>>::Output
[src]
impl<'a, 'b> Shl<&'a u64> for &'b u32
[src]
type Output = <u32 as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u64) -> <u32 as Shl<u64>>::Output
[src]
impl<'a> Shl<u8> for &'a u32
[src]
type Output = <u32 as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u8) -> <u32 as Shl<u8>>::Output
[src]
impl Shl<i8> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: i8) -> u32
[src]
impl<'a, 'b> Shl<&'a i16> for &'b u32
[src]
type Output = <u32 as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i16) -> <u32 as Shl<i16>>::Output
[src]
impl<'a> Shl<i32> for &'a u32
[src]
type Output = <u32 as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i32) -> <u32 as Shl<i32>>::Output
[src]
impl Shl<u16> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: u16) -> u32
[src]
impl<'a, 'b> Shl<&'a u8> for &'b u32
[src]
type Output = <u32 as Shl<u8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u8) -> <u32 as Shl<u8>>::Output
[src]
impl Shl<isize> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: isize) -> u32
[src]
impl<'a> Shl<&'a u64> for u32
[src]
type Output = <u32 as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u64) -> <u32 as Shl<u64>>::Output
[src]
impl<'a> Shl<i128> for &'a u32
[src]
type Output = <u32 as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i128) -> <u32 as Shl<i128>>::Output
[src]
impl<'a> Shl<&'a u16> for u32
[src]
type Output = <u32 as Shl<u16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u16) -> <u32 as Shl<u16>>::Output
[src]
impl<'a> Shl<&'a usize> for u32
[src]
type Output = <u32 as Shl<usize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a usize) -> <u32 as Shl<usize>>::Output
[src]
impl<'a, 'b> Shl<&'a i128> for &'b u32
[src]
type Output = <u32 as Shl<i128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i128) -> <u32 as Shl<i128>>::Output
[src]
impl Shl<u64> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: u64) -> u32
[src]
impl<'a> Shl<u64> for &'a u32
[src]
type Output = <u32 as Shl<u64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u64) -> <u32 as Shl<u64>>::Output
[src]
impl<'a> Shl<i64> for &'a u32
[src]
type Output = <u32 as Shl<i64>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: i64) -> <u32 as Shl<i64>>::Output
[src]
impl<'a> Shl<&'a u128> for u32
[src]
type Output = <u32 as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u128) -> <u32 as Shl<u128>>::Output
[src]
impl<'a> Shl<&'a i32> for u32
[src]
type Output = <u32 as Shl<i32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i32) -> <u32 as Shl<i32>>::Output
[src]
impl Shl<u32> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: u32) -> u32
[src]
impl<'a, 'b> Shl<&'a i8> for &'b u32
[src]
type Output = <u32 as Shl<i8>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i8) -> <u32 as Shl<i8>>::Output
[src]
impl<'a> Shl<isize> for &'a u32
[src]
type Output = <u32 as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: isize) -> <u32 as Shl<isize>>::Output
[src]
impl<'a, 'b> Shl<&'a u128> for &'b u32
[src]
type Output = <u32 as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u128) -> <u32 as Shl<u128>>::Output
[src]
impl<'a> Shl<&'a i16> for u32
[src]
type Output = <u32 as Shl<i16>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a i16) -> <u32 as Shl<i16>>::Output
[src]
impl<'a, 'b> Shl<&'a isize> for &'b u32
[src]
type Output = <u32 as Shl<isize>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a isize) -> <u32 as Shl<isize>>::Output
[src]
impl Shl<i16> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: i16) -> u32
[src]
impl Shl<u8> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: u8) -> u32
[src]
impl Shl<i128> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: i128) -> u32
[src]
impl<'a, 'b> Shl<&'a u32> for &'b u32
[src]
type Output = <u32 as Shl<u32>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: &'a u32) -> <u32 as Shl<u32>>::Output
[src]
impl Shl<u128> for u32
[src]
type Output = u32
The resulting type after applying the <<
operator.
fn shl(self, other: u128) -> u32
[src]
impl<'a> Shl<u128> for &'a u32
[src]
type Output = <u32 as Shl<u128>>::Output
The resulting type after applying the <<
operator.
fn shl(self, other: u128) -> <u32 as Shl<u128>>::Output
[src]
impl From<u16> for u32
1.5.0[src]
Converts u16
to u32
losslessly.
impl From<char> for u32
1.13.0[src]
impl From<u8> for u32
1.5.0[src]
Converts u8
to u32
losslessly.
impl From<bool> for u32
1.28.0[src]
Converts a bool
to a u32
. The resulting value is 0
for false
and 1
for true
values.
Examples
assert_eq!(u32::from(true), 1); assert_eq!(u32::from(false), 0);Run
impl From<NonZeroU32> for u32
1.31.0[src]
impl Default for u32
[src]
impl<'a> BitAnd<&'a u32> for u32
[src]
type Output = <u32 as BitAnd<u32>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: &'a u32) -> <u32 as BitAnd<u32>>::Output
[src]
impl<'a, 'b> BitAnd<&'a u32> for &'b u32
[src]
type Output = <u32 as BitAnd<u32>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: &'a u32) -> <u32 as BitAnd<u32>>::Output
[src]
impl<'a> BitAnd<u32> for &'a u32
[src]
type Output = <u32 as BitAnd<u32>>::Output
The resulting type after applying the &
operator.
fn bitand(self, other: u32) -> <u32 as BitAnd<u32>>::Output
[src]
impl BitAnd<u32> for u32
[src]
type Output = u32
The resulting type after applying the &
operator.
fn bitand(self, rhs: u32) -> u32
[src]
impl Hash for u32
[src]
fn hash<H>(&self, state: &mut H) where
H: Hasher,
[src]
H: Hasher,
fn hash_slice<H>(data: &[u32], state: &mut H) where
H: Hasher,
[src]
H: Hasher,
impl FromStr for u32
[src]
type Err = ParseIntError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<u32, ParseIntError>
[src]
impl<'a> Sum<&'a u32> for u32
1.12.0[src]
impl Sum<u32> for u32
1.12.0[src]
impl<'a> ShlAssign<&'a i16> for u32
1.22.0[src]
impl ShlAssign<usize> for u32
1.8.0[src]
impl<'a> ShlAssign<&'a isize> for u32
1.22.0[src]
impl<'a> ShlAssign<&'a i32> for u32
1.22.0[src]
impl<'a> ShlAssign<&'a u8> for u32
1.22.0[src]
impl ShlAssign<u8> for u32
1.8.0[src]
impl ShlAssign<isize> for u32
1.8.0[src]
impl<'a> ShlAssign<&'a u32> for u32
1.22.0[src]
impl ShlAssign<i32> for u32
1.8.0[src]
impl ShlAssign<u64> for u32
1.8.0[src]
impl<'a> ShlAssign<&'a usize> for u32
1.22.0[src]
impl<'a> ShlAssign<&'a i8> for u32
1.22.0[src]
impl<'a> ShlAssign<&'a u64> for u32
1.22.0[src]
impl ShlAssign<i128> for u32
1.8.0[src]
impl ShlAssign<u128> for u32
1.8.0[src]
impl ShlAssign<i8> for u32
1.8.0[src]
impl<'a> ShlAssign<&'a u128> for u32
1.22.0[src]
impl<'a> ShlAssign<&'a i64> for u32
1.22.0[src]
impl<'a> ShlAssign<&'a i128> for u32
1.22.0[src]
impl ShlAssign<u16> for u32
1.8.0[src]
impl<'a> ShlAssign<&'a u16> for u32
1.22.0[src]
impl ShlAssign<i16> for u32
1.8.0[src]
impl ShlAssign<i64> for u32
1.8.0[src]
impl ShlAssign<u32> for u32
1.8.0[src]
impl From<Ipv4Addr> for u32
1.1.0[src]
Auto Trait Implementations
Blanket Implementations
impl<T> From for T
[src]
impl<T, U> TryFrom for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T, U> Into for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Borrow for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,