tensor.slinalg
– Linear Algebra Ops Using Scipy¶
Note
This module is not imported by default. You need to import it to use it.
API¶
-
class
theano.tensor.slinalg.
Cholesky
(lower=True)¶ Return a triangular matrix square root of positive semi-definite x.
L = cholesky(X, lower=True) implies dot(L, L.T) == X.
-
class
theano.tensor.slinalg.
CholeskyGrad
(lower=True)¶ -
perform
(node, inputs, outputs)¶ Implements the “reverse-mode” gradient [1] for the Cholesky factorization of a positive-definite matrix.
References
[1] S. P. Smith. “Differentiation of the Cholesky Algorithm”. Journal of Computational and Graphical Statistics, Vol. 4, No. 2 (Jun.,1995), pp. 134-147 http://www.jstor.org/stable/1390762
-
-
class
theano.tensor.slinalg.
Eigvalsh
(lower=True)¶ Generalized eigenvalues of a Hermitian positive definite eigensystem.
-
class
theano.tensor.slinalg.
EigvalshGrad
(lower=True)¶ Gradient of generalized eigenvalues of a Hermitian positive definite eigensystem.
-
class
theano.tensor.slinalg.
Expm
(use_c_code='/usr/bin/g++')¶ Compute the matrix exponential of a square array.
-
class
theano.tensor.slinalg.
ExpmGrad
(use_c_code='/usr/bin/g++')¶ Gradient of the matrix exponential of a square array.
-
class
theano.tensor.slinalg.
Solve
(A_structure='general', lower=False, overwrite_A=False, overwrite_b=False)¶ Solve a system of linear equations.
-
theano.tensor.slinalg.
kron
(a, b)¶ Kronecker product.
Same as scipy.linalg.kron(a, b).
Parameters: - a (array_like) –
- b (array_like) –
Returns: Return type: array_like with a.ndim + b.ndim - 2 dimensions
Notes
numpy.kron(a, b) != scipy.linalg.kron(a, b)! They don’t have the same shape and order when a.ndim != b.ndim != 2.