Functions

This section of the tutorial describes the functions that can be applied to CVXPY expressions. CVXPY uses the function information in this section and the DCP rules to mark expressions with a sign and curvature.

Operators

The infix operators +, -, *, / are treated as functions. + and - are affine functions. * and / are affine in CVXPY because expr1*expr2 is allowed only when one of the expressions is constant and expr1/expr2 is allowed only when expr2 is a scalar constant.

Indexing and slicing

All non-scalar expressions can be indexed using the syntax expr[i, j]. Indexing is an affine function. The syntax expr[i] can be used as a shorthand for expr[i, 0] when expr is a column vector. Similarly, expr[i] is shorthand for expr[0, i] when expr is a row vector.

Non-scalar expressions can also be sliced into using the standard Python slicing syntax. For example, expr[i:j:k, r] selects every kth element in column r of expr, starting at row i and ending at row j-1.

CVXPY supports advanced indexing using lists of indices or boolean arrays. The semantics are the same as NumPy (see NumPy advanced indexing). Any time NumPy would return a 1D array, CVXPY returns a column vector.

Transpose

The transpose of any expression can be obtained using the syntax expr.T. Transpose is an affine function.

Power

For any CVXPY expression expr, the power operator expr**p is equivalent to the function power(expr, p).

Scalar functions

A scalar function takes one or more scalars, vectors, or matrices as arguments and returns a scalar.

Function Meaning Domain Sign Curvature  Monotonicity

geo_mean(x)

geo_mean(x, p)

\(p \in \mathbf{R}^n_{+}\)

\(p \neq 0\)

\(x_1^{1/n} \cdots x_n^{1/n}\)

\(\left(x_1^{p_1} \cdots x_n^{p_n}\right)^{\frac{1}{\mathbf{1}^T p}}\)

\(x \in \mathbf{R}^n_{+}\) positive positive concave concave incr incr.
harmonic_mean(x) \(\frac{n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}}\) \(x \in \mathbf{R}^n_{+}\) positive positive concave concave incr incr.
lambda_max(X) \(\lambda_{\max}(X)\) \(X \in \mathbf{S}^n\) unknown unknown convex convex None
lambda_min(X) \(\lambda_{\min}(X)\) \(X \in \mathbf{S}^n\) unknown unknown concave concave None

lambda_sum_largest(X, k)

\(k = 1,\ldots, n\)

\(\text{sum of $k$ largest}\\ \text{eigenvalues of $X$}\) \(X \in\mathbf{S}^{n}\) unknown unknown convex convex None

lambda_sum_smallest(X, k)

\(k = 1,\ldots, n\)

\(\text{sum of $k$ smallest}\\ \text{eigenvalues of $X$}\) \(X \in\mathbf{S}^{n}\) unknown unknown concave concave None
log_det(X) \(\log \left(\det (X)\right)\) \(X \in \mathbf{S}^n_+\) unknown unknown concave concave None
log_sum_exp(X) \(\log \left(\sum_{ij}e^{X_{ij}}\right)\) \(X \in\mathbf{R}^{m \times n}\) unknown unknown convex convex incr incr.
matrix_frac(x, P) \(x^T P^{-1} x\)

\(x \in \mathbf{R}^n\)

\(P \in\mathbf{S}^n_{++}\)

positive positive convex convex None
max_entries(X) \(\max_{ij}\left\{ X_{ij}\right\}\) \(X \in\mathbf{R}^{m \times n}\) same as X convex convex incr incr.
min_entries(X) \(\min_{ij}\left\{ X_{ij}\right\}\) \(X \in\mathbf{R}^{m \times n}\) same as X concave concave incr incr.
mixed_norm(X, p, q) \(\left(\sum_k\left(\sum_l\lvert x_{k,l}\rvert^p\right)^{q/p}\right)^{1/q}\) \(X \in\mathbf{R}^{n \times n}\) positive positive convex convex None

norm(x)

norm(x, 2)

\(\sqrt{\sum_{i}x_{i}^2 }\) \(X \in\mathbf{R}^{n}\) positive positive convex convex

incr for \(x_{i} \geq 0\)

decr for \(x_{i} \leq 0\)

norm(X, “fro”) \(\sqrt{\sum_{ij}X_{ij}^2 }\) \(X \in\mathbf{R}^{m \times n}\) positive positive convex convex

incr for \(X_{ij} \geq 0\)

decr for \(X_{ij} \leq 0\)

norm(X, 1) \(\sum_{ij}\lvert X_{ij} \rvert\) \(X \in\mathbf{R}^{m \times n}\) positive positive convex convex

incr for \(X_{ij} \geq 0\)

decr for \(X_{ij} \leq 0\)

norm(X, “inf”) \(\max_{ij} \{\lvert X_{ij} \rvert\}\) \(X \in\mathbf{R}^{m \times n}\) positive positive convex convex

incr for \(X_{ij} \geq 0\)

decr for \(X_{ij} \leq 0\)

norm(X, “nuc”) \(\mathrm{tr}\left(\left(X^T X\right)^{1/2}\right)\) \(X \in\mathbf{R}^{m \times n}\) positive positive convex convex None

norm(X)

norm(X, 2)

\(\sqrt{\lambda_{\max}\left(X^T X\right)}\) \(X \in\mathbf{R}^{m \times n}\) positive positive convex convex None

pnorm(X, p)

\(p \geq 1\)

or p = 'inf'

\(\|X\|_p = \left(\sum_{ij} |X_{ij}|^p \right)^{1/p}\) \(X \in \mathbf{R}^{m \times n}\) positive positive convex convex

incr for \(X_{ij} \geq 0\)

decr for \(X_{ij} \leq 0\)

pnorm(X, p)

\(p < 1\), \(p \neq 0\)

\(\|X\|_p = \left(\sum_{ij} X_{ij}^p \right)^{1/p}\) \(X \in \mathbf{R}^{m \times n}_+\) positive positive concave concave incr incr.

quad_form(x, P)

constant \(P \in \mathbf{S}^n_+\)

\(x^T P x\) \(x \in \mathbf{R}^n\) positive positive convex convex

incr for \(x_i \geq 0\)

decr for \(x_i \leq 0\)

quad_form(x, P)

constant \(P \in \mathbf{S}^n_-\)

\(x^T P x\) \(x \in \mathbf{R}^n\) negative negative concave concave

decr for \(x_i \geq 0\)

incr for \(x_i \leq 0\)

quad_form(c, X)

constant \(c \in \mathbf{R}^n\)

\(c^T X c\) \(X \in\mathbf{R}^{n \times n}\) depends on c, X affine affine depends on c
quad_over_lin(X, y) \(\left(\sum_{ij}X_{ij}^2\right)/y\)

\(x \in \mathbf{R}^n\)

\(y > 0\)

positive positive convex convex

incr for \(X_{ij} \geq 0\)

decr for \(X_{ij} \leq 0\)

decr decr. in \(y\)

sum_entries(X) \(\sum_{ij}X_{ij}\) \(X \in\mathbf{R}^{m \times n}\) same as X affine affine incr incr.

sum_largest(X, k)

\(k = 1,2,\ldots\)

\(\text{sum of } k\text{ largest }X_{ij}\) \(X \in\mathbf{R}^{m \times n}\) same as X convex convex incr incr.

sum_smallest(X, k)

\(k = 1,2,\ldots\)

\(\text{sum of } k\text{ smallest }X_{ij}\) \(X \in\mathbf{R}^{m \times n}\) same as X concave concave incr incr.
sum_squares(X) \(\sum_{ij}X_{ij}^2\) \(X \in\mathbf{R}^{m \times n}\) positive positive convex convex

incr for \(X_{ij} \geq 0\)

decr for \(X_{ij} \leq 0\)

trace(X) \(\mathrm{tr}\left(X \right)\) \(X \in\mathbf{R}^{n \times n}\) same as X affine affine incr incr.
tv(x) \(\sum_{i}|x_{i+1} - x_i|\) \(x \in \mathbf{R}^n\) positive positive convex convex None
tv(X) \(\sum_{ij}\left\| \left[\begin{matrix} X_{i+1,j} - X_{ij} \\ X_{i,j+1} -X_{ij} \end{matrix}\right] \right\|_2\) \(X \in \mathbf{R}^{m \times n}\) positive positive convex convex None
tv(X1,…,Xk) \(\sum_{ij}\left\| \left[\begin{matrix} X_{i+1,j}^{(1)} - X_{ij}^{(1)} \\ X_{i,j+1}^{(1)} -X_{ij}^{(1)} \\ \vdots \\ X_{i+1,j}^{(k)} - X_{ij}^{(k)} \\ X_{i,j+1}^{(k)} -X_{ij}^{(k)} \end{matrix}\right] \right\|_2\) \(X^{(i)} \in\mathbf{R}^{m \times n}\) positive positive convex convex None

Clarifications

The domain \(\mathbf{S}^n\) refers to the set of symmetric matrices. The domains \(\mathbf{S}^n_+\) and \(\mathbf{S}^n_-\) refer to the set of positive semi-definite and negative semi-definite matrices, respectively. Similarly, \(\mathbf{S}^n_{++}\) and \(\mathbf{S}^n_{--}\) refer to the set of positive definite and negative definite matrices, respectively.

For a vector expression x, norm(x) and norm(x, 2) give the Euclidean norm. For a matrix expression X, however, norm(X) and norm(X, 2) give the spectral norm.

The function norm(X, "fro") is called the Frobenius norm and norm(X, "nuc") the nuclear norm. The nuclear norm can also be defined as the sum of X’s singular values.

The functions max_entries and min_entries give the largest and smallest entry, respectively, in a single expression. These functions should not be confused with max_elemwise and min_elemwise (see Elementwise functions). Use max_elemwise and min_elemwise to find the max or min of a list of scalar expressions.

The function sum_entries sums all the entries in a single expression. The built-in Python sum should be used to add together a list of expressions. For example, the following code sums a list of three expressions:

expr_list = [expr1, expr2, expr3]
expr_sum = sum(expr_list)

Functions along an axis

The functions sum_entries, norm, max_entries, and min_entries can be applied along an axis. Given an m by n expression expr, the syntax func(expr, axis=0) applies func to each column, returning a 1 by n expression. The syntax func(expr, axis=1) applies func to each row, returning an m by 1 expression. For example, the following code sums along the columns and rows of a matrix variable:

X = Variable(5, 4)
col_sums = sum_entries(X, axis=0) # Has size (1, 4)
row_sums = sum_entries(X, axis=1) # Has size (5, 1)

Elementwise functions

These functions operate on each element of their arguments. For example, if X is a 5 by 4 matrix variable, then abs(X) is a 5 by 4 matrix expression. abs(X)[1, 2] is equivalent to abs(X[1, 2]).

Elementwise functions that take multiple arguments, such as max_elemwise and mul_elemwise, operate on the corresponding elements of each argument. For example, if X and Y are both 3 by 3 matrix variables, then max_elemwise(X, Y) is a 3 by 3 matrix expression. max_elemwise(X, Y)[2, 0] is equivalent to max_elemwise(X[2, 0], Y[2, 0]). This means all arguments must have the same dimensions or be scalars, which are promoted.

Function Meaning Domain Sign Curvature  Monotonicity
abs(x) \(\lvert x \rvert\) \(x \in \mathbf{R}\) positive positive convex convex

incr for \(x \geq 0\)

decr for \(x \leq 0\)

entr(x) \(-x \log (x)\) \(x > 0\) unknown unknown concave concave None
exp(x) \(e^x\) \(x \in \mathbf{R}\) positive positive convex convex incr incr.

huber(x, M=1)

\(M \geq 0\)

\(\begin{cases}x^2 &|x| \leq M \\2M|x| - M^2&|x| >M\end{cases}\) \(x \in \mathbf{R}\) positive positive convex convex

incr for \(x \geq 0\)

decr for \(x \leq 0\)

inv_pos(x) \(1/x\) \(x > 0\) positive positive convex convex decr decr.
kl_div(x, y) \(x \log(x/y) - x + y\)

\(x > 0\)

\(y > 0\)

positive positive convex convex None
log(x) \(\log(x)\) \(x > 0\) unknown unknown concave concave incr incr.
log1p(x) \(\log(x+1)\) \(x > -1\) same as x concave concave incr incr.
logistic(x) \(\log(1 + e^{x})\) \(x \in \mathbf{R}\) positive positive convex convex incr incr.
max_elemwise(x1, …, xk) \(\max \left\{x_1, \ldots , x_k\right\}\) \(x_i \in \mathbf{R}\) \(\max(\mathrm{sign}(x_1))\) convex convex incr incr.
min_elemwise(x1, …, xk) \(\min \left\{x_1, \ldots , x_k\right\}\) \(x_i \in \mathbf{R}\) \(\min(\mathrm{sign}(x_1))\) concave concave incr incr.

mul_elemwise(c, x)

\(c \in \mathbf{R}\)

c*x \(x \in\mathbf{R}\) \(\mathrm{sign}(cx)\) affine affine depends on c
neg(x) \(\max \left\{-x, 0 \right\}\) \(x \in \mathbf{R}\) positive positive convex convex decr decr.
pos(x) \(\max \left\{x, 0 \right\}\) \(x \in \mathbf{R}\) positive positive convex convex incr incr.
power(x, 0) \(1\) \(x \in \mathbf{R}\) positive positive constant  
power(x, 1) \(x\) \(x \in \mathbf{R}\) same as x affine affine incr incr.

power(x, p)

\(p = 2, 4, 8, \ldots\)

\(x^p\) \(x \in \mathbf{R}\) positive positive convex convex

incr for \(x \geq 0\)

decr for \(x \leq 0\)

power(x, p)

\(p < 0\)

\(x^p\) \(x > 0\) positive positive convex convex decr decr.

power(x, p)

\(0 < p < 1\)

\(x^p\) \(x \geq 0\) positive positive concave concave incr incr.

power(x, p)

\(p > 1,\ p \neq 2, 4, 8, \ldots\)

\(x^p\) \(x \geq 0\) positive positive convex convex incr incr.

scalene(x, alpha, beta)

\(\text{alpha} \geq 0\)

\(\text{beta} \geq 0\)

\(\alpha\mathrm{pos}(x)+ \beta\mathrm{neg}(x)\) \(x \in \mathbf{R}\) positive positive convex convex

incr for \(x \geq 0\)

decr for \(x \leq 0\)

sqrt(x) \(\sqrt x\) \(x \geq 0\) positive positive concave concave incr incr.
square(x) \(x^2\) \(x \in \mathbf{R}\) positive positive convex convex

incr for \(x \geq 0\)

decr for \(x \leq 0\)

Vector/matrix functions

A vector/matrix function takes one or more scalars, vectors, or matrices as arguments and returns a vector or matrix.

Function Meaning Domain Sign Curvature  Monotonicity
bmat([[X11, …, X1q], …, [Xp1, …, Xpq]]) \(\left[\begin{matrix} X^{(1,1)} & \cdots & X^{(1,q)} \\ \vdots & & \vdots \\ X^{(p,1)} & \cdots & X^{(p,q)} \end{matrix}\right]\) \(X^{(i,j)} \in\mathbf{R}^{m_i \times n_j}\) \(\mathrm{sign}\left(\sum_{ij} X^{(i,j)}_{11}\right)\) affine affine incr incr.

conv(c, x)

\(c\in\mathbf{R}^m\)

\(c*x\) \(x\in \mathbf{R}^n\) \(\mathrm{sign}\left(c_{1}x_{1}\right)\) affine affine depends on c
cumsum(X, axis=0) cumulative sum along given axis. \(X \in \mathbf{R}^{m \times n}\) same as X affine affine incr incr.
diag(x) \(\left[\begin{matrix}x_1 & & \\& \ddots & \\& & x_n\end{matrix}\right]\) \(x \in\mathbf{R}^{n}\) same as x affine affine incr incr.
diag(X) \(\left[\begin{matrix}X_{11} \\\vdots \\X_{nn}\end{matrix}\right]\) \(X \in\mathbf{R}^{n \times n}\) same as X affine affine incr incr.

diff(X, k=1, axis=0)

\(k \in 0,1,2,\ldots\)

kth order differences along given axis \(X \in\mathbf{R}^{m \times n}\) same as X affine affine incr incr.
hstack(X1, …, Xk) \(\left[\begin{matrix}X^{(1)} \cdots X^{(k)}\end{matrix}\right]\) \(X^{(i)} \in\mathbf{R}^{m \times n_i}\) \(\mathrm{sign}\left(\sum_i X^{(i)}_{11}\right)\) affine affine incr incr.

kron(C, X)

\(C\in\mathbf{R}^{p \times q}\)

\(\left[\begin{matrix}C_{11}X & \cdots & C_{1q}X \\ \vdots & & \vdots \\ C_{p1}X & \cdots & C_{pq}X \end{matrix}\right]\) \(X \in\mathbf{R}^{m \times n}\) \(\mathrm{sign}\left(C_{11}X_{11}\right)\) affine affine depends on C
reshape(X, n’, m’) \(X' \in\mathbf{R}^{m' \times n'}\)

\(X \in\mathbf{R}^{m \times n}\)

\(m'n' = mn\)

same as X affine affine incr incr.
vec(X) \(x' \in\mathbf{R}^{mn}\) \(X \in\mathbf{R}^{m \times n}\) same as X affine affine incr incr.
vstack(X1, …, Xk) \(\left[\begin{matrix}X^{(1)} \\ \vdots \\X^{(k)}\end{matrix}\right]\) \(X^{(i)} \in\mathbf{R}^{m_i \times n}\) \(\mathrm{sign}\left(\sum_i X^{(i)}_{11}\right)\) affine affine incr incr.

Clarifications

The input to bmat is a list of lists of CVXPY expressions. It constructs a block matrix. The elements of each inner list are stacked horizontally and then the resulting block matrices are stacked vertically.

The output \(y\) of conv(c, x) has size \(n+m-1\) and is defined as \(y[k]=\sum_{j=0}^k c[j]x[k-j]\).

The output \(x'\) of vec(X) is the matrix \(X\) flattened in column-major order into a vector. Formally, \(x'_i = X_{i \bmod{m}, \left \lfloor{i/m}\right \rfloor }\).

The output \(X'\) of reshape(X, m', n') is the matrix \(X\) cast into an \(m' \times n'\) matrix. The entries are taken from \(X\) in column-major order and stored in \(X'\) in column-major order. Formally, \(X'_{ij} = \mathbf{vec}(X)_{m'j + i}\).