Ping Ultrasonic Range Finder

The SEN136B5B is an ultrasonic range finder from Seeedstudio. It detects the distance of the closest object in front of the sensor (from 3 cm up to 400 cm). It works by sending out a burst of ultrasound and listening for the echo when it bounces off of an object. It pings the obstacles with ultrasound. The Arduino or Genuino board sends a short pulse to trigger the detection, then listens for a pulse on the same pin using the pulseIn() function. The duration of this second pulse is equal to the time taken by the ultrasound to travel to the object and back to the sensor. Using the speed of sound, this time can be converted to distance.

Hardware Required

Circuit

The 5V pin of the SEN136B5B is connected to the 5V pin on the board, the GND pin is connected to the GND pin, and the SIG (signal) pin is connected to digital pin 7 on the board.

click the image to enlarge

image developed using Fritzing. For more circuit examples, see the Fritzing project page

Schematic

click the image to enlarge

Code

/*
  Ping))) Sensor

  This sketch reads a PING))) ultrasonic rangefinder and returns the distance
  to the closest object in range. To do this, it sends a pulse to the sensor to
  initiate a reading, then listens for a pulse to return. The length of the
  returning pulse is proportional to the distance of the object from the sensor.

  The circuit:
    - +V connection of the PING))) attached to +5V
    - GND connection of the PING))) attached to ground
    - SIG connection of the PING))) attached to digital pin 7

  created 3 Nov 2008
  by David A. Mellis
  modified 30 Aug 2011
  by Tom Igoe

  This example code is in the public domain.

  http://www.arduino.cc/en/Tutorial/Ping
*/


// this constant won't change. It's the pin number of the sensor's output:
const int pingPin = 7;

void setup() {
  // initialize serial communication:
  Serial.begin(9600);
}

void loop() {
  // establish variables for duration of the ping, and the distance result
  // in inches and centimeters:
  long duration, inches, cm;

  // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
  // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
  pinMode(pingPin, OUTPUT);
  digitalWrite(pingPin, LOW);
  delayMicroseconds(2);
  digitalWrite(pingPin, HIGH);
  delayMicroseconds(5);
  digitalWrite(pingPin, LOW);

  // The same pin is used to read the signal from the PING))): a HIGH pulse
  // whose duration is the time (in microseconds) from the sending of the ping
  // to the reception of its echo off of an object.
  pinMode(pingPin, INPUT);
  duration = pulseIn(pingPin, HIGH);

  // convert the time into a distance
  inches = microsecondsToInches(duration);
  cm = microsecondsToCentimeters(duration);

  Serial.print(inches);
  Serial.print("in, ");
  Serial.print(cm);
  Serial.print("cm");
  Serial.println();

  delay(100);
}

long microsecondsToInches(long microseconds) {
  // According to Parallax's datasheet for the PING))), there are 73.746
  // microseconds per inch (i.e. sound travels at 1130 feet per second).
  // This gives the distance travelled by the ping, outbound and return,
  // so we divide by 2 to get the distance of the obstacle.
  // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
  return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
  // The speed of sound is 340 m/s or 29 microseconds per centimeter.
  // The ping travels out and back, so to find the distance of the object we
  // take half of the distance travelled.
  return microseconds / 29 / 2;
}

See Also


Last revision 2015/07/29 by SM