FFmpeg  4.0
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
35 #include "libavutil/qsort.h"
36 
38 {
39  static const struct {
40  const void *sbr_codes, *sbr_bits;
41  const unsigned int table_size, elem_size;
42  } sbr_tmp[] = {
43  SBR_VLC_ROW(t_huffman_env_1_5dB),
44  SBR_VLC_ROW(f_huffman_env_1_5dB),
45  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
46  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
47  SBR_VLC_ROW(t_huffman_env_3_0dB),
48  SBR_VLC_ROW(f_huffman_env_3_0dB),
49  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
50  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
51  SBR_VLC_ROW(t_huffman_noise_3_0dB),
52  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
53  };
54 
55  // SBR VLC table initialization
56  SBR_INIT_VLC_STATIC(0, 1098);
57  SBR_INIT_VLC_STATIC(1, 1092);
58  SBR_INIT_VLC_STATIC(2, 768);
59  SBR_INIT_VLC_STATIC(3, 1026);
60  SBR_INIT_VLC_STATIC(4, 1058);
61  SBR_INIT_VLC_STATIC(5, 1052);
62  SBR_INIT_VLC_STATIC(6, 544);
63  SBR_INIT_VLC_STATIC(7, 544);
64  SBR_INIT_VLC_STATIC(8, 592);
65  SBR_INIT_VLC_STATIC(9, 512);
66 
68 
70 }
71 
72 /** Places SBR in pure upsampling mode. */
74  sbr->start = 0;
75  sbr->ready_for_dequant = 0;
76  // Init defults used in pure upsampling mode
77  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
78  sbr->m[1] = 0;
79  // Reset values for first SBR header
80  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
81  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
82 }
83 
85 {
86  if(sbr->mdct.mdct_bits)
87  return;
88  sbr->kx[0] = sbr->kx[1];
89  sbr->id_aac = id_aac;
90  sbr_turnoff(sbr);
91  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
92  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
93  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
94  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
95  * and scale back down at synthesis. */
96  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
97  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
98  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
99  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
100  aacsbr_func_ptr_init(&sbr->c);
101 }
102 
104 {
105  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
106  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
107 }
108 
109 static int qsort_comparison_function_int16(const void *a, const void *b)
110 {
111  return *(const int16_t *)a - *(const int16_t *)b;
112 }
113 
114 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
115 {
116  int i;
117  for (i = 0; i <= last_el; i++)
118  if (table[i] == needle)
119  return 1;
120  return 0;
121 }
122 
123 /// Limiter Frequency Band Table (14496-3 sp04 p198)
125 {
126  int k;
127  if (sbr->bs_limiter_bands > 0) {
128  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
129  Q23(1.18509277094158210129f), //2^(0.49/2)
130  Q23(1.11987160404675912501f) }; //2^(0.49/3)
131  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
132  int16_t patch_borders[7];
133  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
134 
135  patch_borders[0] = sbr->kx[1];
136  for (k = 1; k <= sbr->num_patches; k++)
137  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
138 
139  memcpy(sbr->f_tablelim, sbr->f_tablelow,
140  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
141  if (sbr->num_patches > 1)
142  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
143  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
144 
145  AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
146  uint16_t,
148 
149  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
150  while (out < sbr->f_tablelim + sbr->n_lim) {
151 #if USE_FIXED
152  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
153 #else
154  if (*in >= *out * lim_bands_per_octave_warped) {
155 #endif /* USE_FIXED */
156  *++out = *in++;
157  } else if (*in == *out ||
158  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
159  in++;
160  sbr->n_lim--;
161  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
162  *out = *in++;
163  sbr->n_lim--;
164  } else {
165  *++out = *in++;
166  }
167  }
168  } else {
169  sbr->f_tablelim[0] = sbr->f_tablelow[0];
170  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
171  sbr->n_lim = 1;
172  }
173 }
174 
176 {
177  unsigned int cnt = get_bits_count(gb);
178  uint8_t bs_header_extra_1;
179  uint8_t bs_header_extra_2;
180  int old_bs_limiter_bands = sbr->bs_limiter_bands;
181  SpectrumParameters old_spectrum_params;
182 
183  sbr->start = 1;
184  sbr->ready_for_dequant = 0;
185 
186  // Save last spectrum parameters variables to compare to new ones
187  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
188 
189  sbr->bs_amp_res_header = get_bits1(gb);
190  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
191  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
192  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
193  skip_bits(gb, 2); // bs_reserved
194 
195  bs_header_extra_1 = get_bits1(gb);
196  bs_header_extra_2 = get_bits1(gb);
197 
198  if (bs_header_extra_1) {
199  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
202  } else {
206  }
207 
208  // Check if spectrum parameters changed
209  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
210  sbr->reset = 1;
211 
212  if (bs_header_extra_2) {
213  sbr->bs_limiter_bands = get_bits(gb, 2);
214  sbr->bs_limiter_gains = get_bits(gb, 2);
215  sbr->bs_interpol_freq = get_bits1(gb);
216  sbr->bs_smoothing_mode = get_bits1(gb);
217  } else {
218  sbr->bs_limiter_bands = 2;
219  sbr->bs_limiter_gains = 2;
220  sbr->bs_interpol_freq = 1;
221  sbr->bs_smoothing_mode = 1;
222  }
223 
224  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
225  sbr_make_f_tablelim(sbr);
226 
227  return get_bits_count(gb) - cnt;
228 }
229 
230 static int array_min_int16(const int16_t *array, int nel)
231 {
232  int i, min = array[0];
233  for (i = 1; i < nel; i++)
234  min = FFMIN(array[i], min);
235  return min;
236 }
237 
238 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
239 {
240  // Requirements (14496-3 sp04 p205)
241  if (n_master <= 0) {
242  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
243  return -1;
244  }
245  if (bs_xover_band >= n_master) {
246  av_log(avctx, AV_LOG_ERROR,
247  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
248  bs_xover_band);
249  return -1;
250  }
251  return 0;
252 }
253 
254 /// Master Frequency Band Table (14496-3 sp04 p194)
256  SpectrumParameters *spectrum)
257 {
258  unsigned int temp, max_qmf_subbands = 0;
259  unsigned int start_min, stop_min;
260  int k;
261  const int8_t *sbr_offset_ptr;
262  int16_t stop_dk[13];
263 
264  switch (sbr->sample_rate) {
265  case 16000:
266  sbr_offset_ptr = sbr_offset[0];
267  break;
268  case 22050:
269  sbr_offset_ptr = sbr_offset[1];
270  break;
271  case 24000:
272  sbr_offset_ptr = sbr_offset[2];
273  break;
274  case 32000:
275  sbr_offset_ptr = sbr_offset[3];
276  break;
277  case 44100: case 48000: case 64000:
278  sbr_offset_ptr = sbr_offset[4];
279  break;
280  case 88200: case 96000: case 128000: case 176400: case 192000:
281  sbr_offset_ptr = sbr_offset[5];
282  break;
283  default:
285  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
286  return -1;
287  }
288 
289  if (sbr->sample_rate < 32000) {
290  temp = 3000;
291  } else if (sbr->sample_rate < 64000) {
292  temp = 4000;
293  } else
294  temp = 5000;
295 
296  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
297  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
298 
299  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
300 
301  if (spectrum->bs_stop_freq < 14) {
302  sbr->k[2] = stop_min;
303  make_bands(stop_dk, stop_min, 64, 13);
304  AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
305  for (k = 0; k < spectrum->bs_stop_freq; k++)
306  sbr->k[2] += stop_dk[k];
307  } else if (spectrum->bs_stop_freq == 14) {
308  sbr->k[2] = 2*sbr->k[0];
309  } else if (spectrum->bs_stop_freq == 15) {
310  sbr->k[2] = 3*sbr->k[0];
311  } else {
313  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
314  return -1;
315  }
316  sbr->k[2] = FFMIN(64, sbr->k[2]);
317 
318  // Requirements (14496-3 sp04 p205)
319  if (sbr->sample_rate <= 32000) {
320  max_qmf_subbands = 48;
321  } else if (sbr->sample_rate == 44100) {
322  max_qmf_subbands = 35;
323  } else if (sbr->sample_rate >= 48000)
324  max_qmf_subbands = 32;
325  else
326  av_assert0(0);
327 
328  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
330  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
331  return -1;
332  }
333 
334  if (!spectrum->bs_freq_scale) {
335  int dk, k2diff;
336 
337  dk = spectrum->bs_alter_scale + 1;
338  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
340  return -1;
341 
342  for (k = 1; k <= sbr->n_master; k++)
343  sbr->f_master[k] = dk;
344 
345  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
346  if (k2diff < 0) {
347  sbr->f_master[1]--;
348  sbr->f_master[2]-= (k2diff < -1);
349  } else if (k2diff) {
350  sbr->f_master[sbr->n_master]++;
351  }
352 
353  sbr->f_master[0] = sbr->k[0];
354  for (k = 1; k <= sbr->n_master; k++)
355  sbr->f_master[k] += sbr->f_master[k - 1];
356 
357  } else {
358  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
359  int two_regions, num_bands_0;
360  int vdk0_max, vdk1_min;
361  int16_t vk0[49];
362 #if USE_FIXED
363  int tmp, nz = 0;
364 #endif /* USE_FIXED */
365 
366  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
367  two_regions = 1;
368  sbr->k[1] = 2 * sbr->k[0];
369  } else {
370  two_regions = 0;
371  sbr->k[1] = sbr->k[2];
372  }
373 
374 #if USE_FIXED
375  tmp = (sbr->k[1] << 23) / sbr->k[0];
376  while (tmp < 0x40000000) {
377  tmp <<= 1;
378  nz++;
379  }
380  tmp = fixed_log(tmp - 0x80000000);
381  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
382  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
383  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
384 #else
385  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
386 #endif /* USE_FIXED */
387 
388  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
389  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
390  return -1;
391  }
392 
393  vk0[0] = 0;
394 
395  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
396 
397  AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
398  vdk0_max = vk0[num_bands_0];
399 
400  vk0[0] = sbr->k[0];
401  for (k = 1; k <= num_bands_0; k++) {
402  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
403  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
404  return -1;
405  }
406  vk0[k] += vk0[k-1];
407  }
408 
409  if (two_regions) {
410  int16_t vk1[49];
411 #if USE_FIXED
412  int num_bands_1;
413 
414  tmp = (sbr->k[2] << 23) / sbr->k[1];
415  nz = 0;
416  while (tmp < 0x40000000) {
417  tmp <<= 1;
418  nz++;
419  }
420  tmp = fixed_log(tmp - 0x80000000);
421  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
422  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
423  if (spectrum->bs_alter_scale)
424  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
425  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
426 #else
427  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
428  : 1.0f; // bs_alter_scale = {0,1}
429  int num_bands_1 = lrintf(half_bands * invwarp *
430  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
431 #endif /* USE_FIXED */
432  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
433 
434  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
435 
436  if (vdk1_min < vdk0_max) {
437  int change;
438  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
439  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
440  vk1[1] += change;
441  vk1[num_bands_1] -= change;
442  }
443 
444  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
445 
446  vk1[0] = sbr->k[1];
447  for (k = 1; k <= num_bands_1; k++) {
448  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
449  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
450  return -1;
451  }
452  vk1[k] += vk1[k-1];
453  }
454 
455  sbr->n_master = num_bands_0 + num_bands_1;
457  return -1;
458  memcpy(&sbr->f_master[0], vk0,
459  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
460  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
461  num_bands_1 * sizeof(sbr->f_master[0]));
462 
463  } else {
464  sbr->n_master = num_bands_0;
466  return -1;
467  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468  }
469  }
470 
471  return 0;
472 }
473 
474 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
476 {
477  int i, k, last_k = -1, last_msb = -1, sb = 0;
478  int msb = sbr->k[0];
479  int usb = sbr->kx[1];
480  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
481 
482  sbr->num_patches = 0;
483 
484  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
485  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
486  } else
487  k = sbr->n_master;
488 
489  do {
490  int odd = 0;
491  if (k == last_k && msb == last_msb) {
492  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
493  return AVERROR_INVALIDDATA;
494  }
495  last_k = k;
496  last_msb = msb;
497  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
498  sb = sbr->f_master[i];
499  odd = (sb + sbr->k[0]) & 1;
500  }
501 
502  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
503  // After this check the final number of patches can still be six which is
504  // illegal however the Coding Technologies decoder check stream has a final
505  // count of 6 patches
506  if (sbr->num_patches > 5) {
507  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
508  return -1;
509  }
510 
511  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
512  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
513 
514  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
515  usb = sb;
516  msb = sb;
517  sbr->num_patches++;
518  } else
519  msb = sbr->kx[1];
520 
521  if (sbr->f_master[k] - sb < 3)
522  k = sbr->n_master;
523  } while (sb != sbr->kx[1] + sbr->m[1]);
524 
525  if (sbr->num_patches > 1 &&
526  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
527  sbr->num_patches--;
528 
529  return 0;
530 }
531 
532 /// Derived Frequency Band Tables (14496-3 sp04 p197)
534 {
535  int k, temp;
536 #if USE_FIXED
537  int nz = 0;
538 #endif /* USE_FIXED */
539 
540  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
541  sbr->n[0] = (sbr->n[1] + 1) >> 1;
542 
543  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
544  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
545  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
546  sbr->kx[1] = sbr->f_tablehigh[0];
547 
548  // Requirements (14496-3 sp04 p205)
549  if (sbr->kx[1] + sbr->m[1] > 64) {
551  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
552  return -1;
553  }
554  if (sbr->kx[1] > 32) {
555  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
556  return -1;
557  }
558 
559  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
560  temp = sbr->n[1] & 1;
561  for (k = 1; k <= sbr->n[0]; k++)
562  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
563 #if USE_FIXED
564  temp = (sbr->k[2] << 23) / sbr->kx[1];
565  while (temp < 0x40000000) {
566  temp <<= 1;
567  nz++;
568  }
569  temp = fixed_log(temp - 0x80000000);
570  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
571  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
572 
573  sbr->n_q = (temp + 0x400000) >> 23;
574  if (sbr->n_q < 1)
575  sbr->n_q = 1;
576 #else
578  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
579 #endif /* USE_FIXED */
580 
581  if (sbr->n_q > 5) {
582  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
583  return -1;
584  }
585 
586  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
587  temp = 0;
588  for (k = 1; k <= sbr->n_q; k++) {
589  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
590  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
591  }
592 
593  if (sbr_hf_calc_npatches(ac, sbr) < 0)
594  return -1;
595 
596  sbr_make_f_tablelim(sbr);
597 
598  sbr->data[0].f_indexnoise = 0;
599  sbr->data[1].f_indexnoise = 0;
600 
601  return 0;
602 }
603 
605  int elements)
606 {
607  int i;
608  for (i = 0; i < elements; i++) {
609  vec[i] = get_bits1(gb);
610  }
611 }
612 
613 /** ceil(log2(index+1)) */
614 static const int8_t ceil_log2[] = {
615  0, 1, 2, 2, 3, 3,
616 };
617 
619  GetBitContext *gb, SBRData *ch_data)
620 {
621  int i;
622  int bs_pointer = 0;
623  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
624  int abs_bord_trail = 16;
625  int num_rel_lead, num_rel_trail;
626  unsigned bs_num_env_old = ch_data->bs_num_env;
627  int bs_frame_class, bs_num_env;
628 
629  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
630  ch_data->bs_amp_res = sbr->bs_amp_res_header;
631  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
632 
633  switch (bs_frame_class = get_bits(gb, 2)) {
634  case FIXFIX:
635  bs_num_env = 1 << get_bits(gb, 2);
636  if (bs_num_env > 4) {
638  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
639  bs_num_env);
640  return -1;
641  }
642  ch_data->bs_num_env = bs_num_env;
643  num_rel_lead = ch_data->bs_num_env - 1;
644  if (ch_data->bs_num_env == 1)
645  ch_data->bs_amp_res = 0;
646 
647 
648  ch_data->t_env[0] = 0;
649  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
650 
651  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
652  ch_data->bs_num_env;
653  for (i = 0; i < num_rel_lead; i++)
654  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
655 
656  ch_data->bs_freq_res[1] = get_bits1(gb);
657  for (i = 1; i < ch_data->bs_num_env; i++)
658  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
659  break;
660  case FIXVAR:
661  abs_bord_trail += get_bits(gb, 2);
662  num_rel_trail = get_bits(gb, 2);
663  ch_data->bs_num_env = num_rel_trail + 1;
664  ch_data->t_env[0] = 0;
665  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
666 
667  for (i = 0; i < num_rel_trail; i++)
668  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
669  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
670 
671  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
672 
673  for (i = 0; i < ch_data->bs_num_env; i++)
674  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
675  break;
676  case VARFIX:
677  ch_data->t_env[0] = get_bits(gb, 2);
678  num_rel_lead = get_bits(gb, 2);
679  ch_data->bs_num_env = num_rel_lead + 1;
680  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
681 
682  for (i = 0; i < num_rel_lead; i++)
683  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
684 
685  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
686 
687  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
688  break;
689  case VARVAR:
690  ch_data->t_env[0] = get_bits(gb, 2);
691  abs_bord_trail += get_bits(gb, 2);
692  num_rel_lead = get_bits(gb, 2);
693  num_rel_trail = get_bits(gb, 2);
694  bs_num_env = num_rel_lead + num_rel_trail + 1;
695 
696  if (bs_num_env > 5) {
698  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
699  bs_num_env);
700  return -1;
701  }
702  ch_data->bs_num_env = bs_num_env;
703 
704  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
705 
706  for (i = 0; i < num_rel_lead; i++)
707  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
708  for (i = 0; i < num_rel_trail; i++)
709  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
710  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
711 
712  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
713 
714  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
715  break;
716  }
717  ch_data->bs_frame_class = bs_frame_class;
718 
719  av_assert0(bs_pointer >= 0);
720  if (bs_pointer > ch_data->bs_num_env + 1) {
722  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
723  bs_pointer);
724  return -1;
725  }
726 
727  for (i = 1; i <= ch_data->bs_num_env; i++) {
728  if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
729  av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
730  return -1;
731  }
732  }
733 
734  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
735 
736  ch_data->t_q[0] = ch_data->t_env[0];
737  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
738  if (ch_data->bs_num_noise > 1) {
739  int idx;
740  if (ch_data->bs_frame_class == FIXFIX) {
741  idx = ch_data->bs_num_env >> 1;
742  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
743  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
744  } else { // VARFIX
745  if (!bs_pointer)
746  idx = 1;
747  else if (bs_pointer == 1)
748  idx = ch_data->bs_num_env - 1;
749  else // bs_pointer > 1
750  idx = bs_pointer - 1;
751  }
752  ch_data->t_q[1] = ch_data->t_env[idx];
753  }
754 
755  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
756  ch_data->e_a[1] = -1;
757  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
758  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
759  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
760  ch_data->e_a[1] = bs_pointer - 1;
761 
762  return 0;
763 }
764 
765 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
766  //These variables are saved from the previous frame rather than copied
767  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
768  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
769  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
770 
771  //These variables are read from the bitstream and therefore copied
772  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
773  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
774  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
775  dst->bs_num_env = src->bs_num_env;
776  dst->bs_amp_res = src->bs_amp_res;
777  dst->bs_num_noise = src->bs_num_noise;
778  dst->bs_frame_class = src->bs_frame_class;
779  dst->e_a[1] = src->e_a[1];
780 }
781 
782 /// Read how the envelope and noise floor data is delta coded
784  SBRData *ch_data)
785 {
786  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
787  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
788 }
789 
790 /// Read inverse filtering data
792  SBRData *ch_data)
793 {
794  int i;
795 
796  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
797  for (i = 0; i < sbr->n_q; i++)
798  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
799 }
800 
802  SBRData *ch_data, int ch)
803 {
804  int bits;
805  int i, j, k;
806  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
807  int t_lav, f_lav;
808  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
809  const int odd = sbr->n[1] & 1;
810 
811  if (sbr->bs_coupling && ch) {
812  if (ch_data->bs_amp_res) {
813  bits = 5;
818  } else {
819  bits = 6;
824  }
825  } else {
826  if (ch_data->bs_amp_res) {
827  bits = 6;
832  } else {
833  bits = 7;
838  }
839  }
840 
841  for (i = 0; i < ch_data->bs_num_env; i++) {
842  if (ch_data->bs_df_env[i]) {
843  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
844  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
845  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
846  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
847  if (ch_data->env_facs_q[i + 1][j] > 127U) {
848  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
849  return AVERROR_INVALIDDATA;
850  }
851  }
852  } else if (ch_data->bs_freq_res[i + 1]) {
853  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
854  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
855  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
856  if (ch_data->env_facs_q[i + 1][j] > 127U) {
857  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
858  return AVERROR_INVALIDDATA;
859  }
860  }
861  } else {
862  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
863  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
864  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
865  if (ch_data->env_facs_q[i + 1][j] > 127U) {
866  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
867  return AVERROR_INVALIDDATA;
868  }
869  }
870  }
871  } else {
872  ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
873  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
874  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
875  if (ch_data->env_facs_q[i + 1][j] > 127U) {
876  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
877  return AVERROR_INVALIDDATA;
878  }
879  }
880  }
881  }
882 
883  //assign 0th elements of env_facs_q from last elements
884  memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
885  sizeof(ch_data->env_facs_q[0]));
886 
887  return 0;
888 }
889 
891  SBRData *ch_data, int ch)
892 {
893  int i, j;
894  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
895  int t_lav, f_lav;
896  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
897 
898  if (sbr->bs_coupling && ch) {
903  } else {
908  }
909 
910  for (i = 0; i < ch_data->bs_num_noise; i++) {
911  if (ch_data->bs_df_noise[i]) {
912  for (j = 0; j < sbr->n_q; j++) {
913  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
914  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
915  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
916  return AVERROR_INVALIDDATA;
917  }
918  }
919  } else {
920  ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
921  for (j = 1; j < sbr->n_q; j++) {
922  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
923  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
924  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
925  return AVERROR_INVALIDDATA;
926  }
927  }
928  }
929  }
930 
931  //assign 0th elements of noise_facs_q from last elements
932  memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
933  sizeof(ch_data->noise_facs_q[0]));
934  return 0;
935 }
936 
938  GetBitContext *gb,
939  int bs_extension_id, int *num_bits_left)
940 {
941  switch (bs_extension_id) {
942  case EXTENSION_ID_PS:
943  if (!ac->oc[1].m4ac.ps) {
944  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
945  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
946  *num_bits_left = 0;
947  } else {
948  *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
950  }
951  break;
952  default:
953  // some files contain 0-padding
954  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
955  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
956  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
957  *num_bits_left = 0;
958  break;
959  }
960 }
961 
964  GetBitContext *gb)
965 {
966  int ret;
967 
968  if (get_bits1(gb)) // bs_data_extra
969  skip_bits(gb, 4); // bs_reserved
970 
971  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
972  return -1;
973  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
974  read_sbr_invf(sbr, gb, &sbr->data[0]);
975  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
976  return ret;
977  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
978  return ret;
979 
980  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
981  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
982 
983  return 0;
984 }
985 
988  GetBitContext *gb)
989 {
990  int ret;
991 
992  if (get_bits1(gb)) // bs_data_extra
993  skip_bits(gb, 8); // bs_reserved
994 
995  if ((sbr->bs_coupling = get_bits1(gb))) {
996  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
997  return -1;
998  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
999  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1000  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1001  read_sbr_invf(sbr, gb, &sbr->data[0]);
1002  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1003  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1004  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1005  return ret;
1006  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1007  return ret;
1008  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1009  return ret;
1010  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1011  return ret;
1012  } else {
1013  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1014  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1015  return -1;
1016  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1017  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1018  read_sbr_invf(sbr, gb, &sbr->data[0]);
1019  read_sbr_invf(sbr, gb, &sbr->data[1]);
1020  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1021  return ret;
1022  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1023  return ret;
1024  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1025  return ret;
1026  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1027  return ret;
1028  }
1029 
1030  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1031  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1032  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1033  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1034 
1035  return 0;
1036 }
1037 
1038 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1039  GetBitContext *gb, int id_aac)
1040 {
1041  unsigned int cnt = get_bits_count(gb);
1042 
1043  sbr->id_aac = id_aac;
1044  sbr->ready_for_dequant = 1;
1045 
1046  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1047  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1048  sbr_turnoff(sbr);
1049  return get_bits_count(gb) - cnt;
1050  }
1051  } else if (id_aac == TYPE_CPE) {
1052  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1053  sbr_turnoff(sbr);
1054  return get_bits_count(gb) - cnt;
1055  }
1056  } else {
1057  av_log(ac->avctx, AV_LOG_ERROR,
1058  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1059  sbr_turnoff(sbr);
1060  return get_bits_count(gb) - cnt;
1061  }
1062  if (get_bits1(gb)) { // bs_extended_data
1063  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1064  if (num_bits_left == 15)
1065  num_bits_left += get_bits(gb, 8); // bs_esc_count
1066 
1067  num_bits_left <<= 3;
1068  while (num_bits_left > 7) {
1069  num_bits_left -= 2;
1070  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1071  }
1072  if (num_bits_left < 0) {
1073  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1074  }
1075  if (num_bits_left > 0)
1076  skip_bits(gb, num_bits_left);
1077  }
1078 
1079  return get_bits_count(gb) - cnt;
1080 }
1081 
1083 {
1084  int err;
1085  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1086  if (err >= 0)
1087  err = sbr_make_f_derived(ac, sbr);
1088  if (err < 0) {
1089  av_log(ac->avctx, AV_LOG_ERROR,
1090  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1091  sbr_turnoff(sbr);
1092  }
1093 }
1094 
1095 /**
1096  * Decode Spectral Band Replication extension data; reference: table 4.55.
1097  *
1098  * @param crc flag indicating the presence of CRC checksum
1099  * @param cnt length of TYPE_FIL syntactic element in bytes
1100  *
1101  * @return Returns number of bytes consumed from the TYPE_FIL element.
1102  */
1104  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1105 {
1106  unsigned int num_sbr_bits = 0, num_align_bits;
1107  unsigned bytes_read;
1108  GetBitContext gbc = *gb_host, *gb = &gbc;
1109  skip_bits_long(gb_host, cnt*8 - 4);
1110 
1111  sbr->reset = 0;
1112 
1113  if (!sbr->sample_rate)
1114  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1115  if (!ac->oc[1].m4ac.ext_sample_rate)
1116  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1117 
1118  if (crc) {
1119  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1120  num_sbr_bits += 10;
1121  }
1122 
1123  //Save some state from the previous frame.
1124  sbr->kx[0] = sbr->kx[1];
1125  sbr->m[0] = sbr->m[1];
1126  sbr->kx_and_m_pushed = 1;
1127 
1128  num_sbr_bits++;
1129  if (get_bits1(gb)) // bs_header_flag
1130  num_sbr_bits += read_sbr_header(sbr, gb);
1131 
1132  if (sbr->reset)
1133  sbr_reset(ac, sbr);
1134 
1135  if (sbr->start)
1136  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1137 
1138  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1139  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1140 
1141  if (bytes_read > cnt) {
1142  av_log(ac->avctx, AV_LOG_ERROR,
1143  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1144  sbr_turnoff(sbr);
1145  }
1146  return cnt;
1147 }
1148 
1149 /**
1150  * Analysis QMF Bank (14496-3 sp04 p206)
1151  *
1152  * @param x pointer to the beginning of the first sample window
1153  * @param W array of complex-valued samples split into subbands
1154  */
1155 #ifndef sbr_qmf_analysis
1156 #if USE_FIXED
1157 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1158 #else
1160 #endif /* USE_FIXED */
1161  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1162  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1163 {
1164  int i;
1165 #if USE_FIXED
1166  int j;
1167 #endif
1168  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1169  memcpy(x+288, in, 1024*sizeof(x[0]));
1170  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1171  // are not supported
1172  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1173  sbrdsp->sum64x5(z);
1174  sbrdsp->qmf_pre_shuffle(z);
1175 #if USE_FIXED
1176  for (j = 64; j < 128; j++) {
1177  if (z[j] > 1<<24) {
1179  "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1180  z[j], 1<<24);
1181  z[j] = 1<<24;
1182  } else if (z[j] < -(1<<24)) {
1184  "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1185  z[j], -(1<<24));
1186  z[j] = -(1<<24);
1187  }
1188  }
1189 #endif
1190  mdct->imdct_half(mdct, z, z+64);
1191  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1192  x += 32;
1193  }
1194 }
1195 #endif
1196 
1197 /**
1198  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1199  * (14496-3 sp04 p206)
1200  */
1201 #ifndef sbr_qmf_synthesis
1202 static void sbr_qmf_synthesis(FFTContext *mdct,
1203 #if USE_FIXED
1204  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1205 #else
1206  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1207 #endif /* USE_FIXED */
1208  INTFLOAT *out, INTFLOAT X[2][38][64],
1209  INTFLOAT mdct_buf[2][64],
1210  INTFLOAT *v0, int *v_off, const unsigned int div)
1211 {
1212  int i, n;
1213  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1214  const int step = 128 >> div;
1215  INTFLOAT *v;
1216  for (i = 0; i < 32; i++) {
1217  if (*v_off < step) {
1218  int saved_samples = (1280 - 128) >> div;
1219  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1220  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1221  } else {
1222  *v_off -= step;
1223  }
1224  v = v0 + *v_off;
1225  if (div) {
1226  for (n = 0; n < 32; n++) {
1227  X[0][i][ n] = -X[0][i][n];
1228  X[0][i][32+n] = X[1][i][31-n];
1229  }
1230  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1231  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1232  } else {
1233  sbrdsp->neg_odd_64(X[1][i]);
1234  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1235  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1236  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1237  }
1238  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1239  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1240  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1241  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1242  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1243  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1244  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1245  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1246  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1247  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1248  out += 64 >> div;
1249  }
1250 }
1251 #endif
1252 
1253 /// Generate the subband filtered lowband
1255  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1256  int buf_idx)
1257 {
1258  int i, k;
1259  const int t_HFGen = 8;
1260  const int i_f = 32;
1261  memset(X_low, 0, 32*sizeof(*X_low));
1262  for (k = 0; k < sbr->kx[1]; k++) {
1263  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1264  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1265  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1266  }
1267  }
1268  buf_idx = 1-buf_idx;
1269  for (k = 0; k < sbr->kx[0]; k++) {
1270  for (i = 0; i < t_HFGen; i++) {
1271  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1272  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1273  }
1274  }
1275  return 0;
1276 }
1277 
1278 /// High Frequency Generator (14496-3 sp04 p215)
1280  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1281  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1282  const INTFLOAT bw_array[5], const uint8_t *t_env,
1283  int bs_num_env)
1284 {
1285  int j, x;
1286  int g = 0;
1287  int k = sbr->kx[1];
1288  for (j = 0; j < sbr->num_patches; j++) {
1289  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1290  const int p = sbr->patch_start_subband[j] + x;
1291  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1292  g++;
1293  g--;
1294 
1295  if (g < 0) {
1296  av_log(ac->avctx, AV_LOG_ERROR,
1297  "ERROR : no subband found for frequency %d\n", k);
1298  return -1;
1299  }
1300 
1301  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1302  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1303  alpha0[p], alpha1[p], bw_array[g],
1304  2 * t_env[0], 2 * t_env[bs_num_env]);
1305  }
1306  }
1307  if (k < sbr->m[1] + sbr->kx[1])
1308  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1309 
1310  return 0;
1311 }
1312 
1313 /// Generate the subband filtered lowband
1314 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1315  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1316  const INTFLOAT X_low[32][40][2], int ch)
1317 {
1318  int k, i;
1319  const int i_f = 32;
1320  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1321  memset(X, 0, 2*sizeof(*X));
1322  for (k = 0; k < sbr->kx[0]; k++) {
1323  for (i = 0; i < i_Temp; i++) {
1324  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1325  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1326  }
1327  }
1328  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1329  for (i = 0; i < i_Temp; i++) {
1330  X[0][i][k] = Y0[i + i_f][k][0];
1331  X[1][i][k] = Y0[i + i_f][k][1];
1332  }
1333  }
1334 
1335  for (k = 0; k < sbr->kx[1]; k++) {
1336  for (i = i_Temp; i < 38; i++) {
1337  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1338  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1339  }
1340  }
1341  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1342  for (i = i_Temp; i < i_f; i++) {
1343  X[0][i][k] = Y1[i][k][0];
1344  X[1][i][k] = Y1[i][k][1];
1345  }
1346  }
1347  return 0;
1348 }
1349 
1350 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1351  * (14496-3 sp04 p217)
1352  */
1354  SBRData *ch_data, int e_a[2])
1355 {
1356  int e, i, m;
1357 
1358  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1359  for (e = 0; e < ch_data->bs_num_env; e++) {
1360  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1361  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1362  int k;
1363 
1364  if (sbr->kx[1] != table[0]) {
1365  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1366  "Derived frequency tables were not regenerated.\n");
1367  sbr_turnoff(sbr);
1368  return AVERROR_BUG;
1369  }
1370  for (i = 0; i < ilim; i++)
1371  for (m = table[i]; m < table[i + 1]; m++)
1372  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1373 
1374  // ch_data->bs_num_noise > 1 => 2 noise floors
1375  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1376  for (i = 0; i < sbr->n_q; i++)
1377  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1378  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1379 
1380  for (i = 0; i < sbr->n[1]; i++) {
1381  if (ch_data->bs_add_harmonic_flag) {
1382  const unsigned int m_midpoint =
1383  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1384 
1385  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1386  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1387  }
1388  }
1389 
1390  for (i = 0; i < ilim; i++) {
1391  int additional_sinusoid_present = 0;
1392  for (m = table[i]; m < table[i + 1]; m++) {
1393  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1394  additional_sinusoid_present = 1;
1395  break;
1396  }
1397  }
1398  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1399  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1400  }
1401  }
1402 
1403  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1404  return 0;
1405 }
1406 
1407 /// Estimation of current envelope (14496-3 sp04 p218)
1408 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1409  SpectralBandReplication *sbr, SBRData *ch_data)
1410 {
1411  int e, m;
1412  int kx1 = sbr->kx[1];
1413 
1414  if (sbr->bs_interpol_freq) {
1415  for (e = 0; e < ch_data->bs_num_env; e++) {
1416 #if USE_FIXED
1417  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1418 #else
1419  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1420 #endif /* USE_FIXED */
1421  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1422  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1423 
1424  for (m = 0; m < sbr->m[1]; m++) {
1425  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1426 #if USE_FIXED
1427  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1428 #else
1429  e_curr[e][m] = sum * recip_env_size;
1430 #endif /* USE_FIXED */
1431  }
1432  }
1433  } else {
1434  int k, p;
1435 
1436  for (e = 0; e < ch_data->bs_num_env; e++) {
1437  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1438  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1439  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1440  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1441 
1442  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1443 #if USE_FIXED
1444  SoftFloat sum = FLOAT_0;
1445  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1446  for (k = table[p]; k < table[p + 1]; k++) {
1447  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1448  }
1449  sum = av_mul_sf(sum, den);
1450 #else
1451  float sum = 0.0f;
1452  const int den = env_size * (table[p + 1] - table[p]);
1453 
1454  for (k = table[p]; k < table[p + 1]; k++) {
1455  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1456  }
1457  sum /= den;
1458 #endif /* USE_FIXED */
1459  for (k = table[p]; k < table[p + 1]; k++) {
1460  e_curr[e][k - kx1] = sum;
1461  }
1462  }
1463  }
1464  }
1465 }
1466 
1468  INTFLOAT* L, INTFLOAT* R)
1469 {
1470  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1471  int ch;
1472  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1473  int err;
1474 
1475  if (id_aac != sbr->id_aac) {
1476  av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1477  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1478  sbr_turnoff(sbr);
1479  }
1480 
1481  if (sbr->start && !sbr->ready_for_dequant) {
1482  av_log(ac->avctx, AV_LOG_ERROR,
1483  "No quantized data read for sbr_dequant.\n");
1484  sbr_turnoff(sbr);
1485  }
1486 
1487  if (!sbr->kx_and_m_pushed) {
1488  sbr->kx[0] = sbr->kx[1];
1489  sbr->m[0] = sbr->m[1];
1490  } else {
1491  sbr->kx_and_m_pushed = 0;
1492  }
1493 
1494  if (sbr->start) {
1495  sbr_dequant(sbr, id_aac);
1496  sbr->ready_for_dequant = 0;
1497  }
1498  for (ch = 0; ch < nch; ch++) {
1499  /* decode channel */
1500  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1501  (INTFLOAT*)sbr->qmf_filter_scratch,
1502  sbr->data[ch].W, sbr->data[ch].Ypos);
1503  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1504  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1505  sbr->data[ch].Ypos);
1506  sbr->data[ch].Ypos ^= 1;
1507  if (sbr->start) {
1508  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1509  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1510  sbr_chirp(sbr, &sbr->data[ch]);
1511  av_assert0(sbr->data[ch].bs_num_env > 0);
1512  sbr_hf_gen(ac, sbr, sbr->X_high,
1513  (const INTFLOAT (*)[40][2]) sbr->X_low,
1514  (const INTFLOAT (*)[2]) sbr->alpha0,
1515  (const INTFLOAT (*)[2]) sbr->alpha1,
1516  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1517  sbr->data[ch].bs_num_env);
1518 
1519  // hf_adj
1520  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1521  if (!err) {
1522  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1523  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1524  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1525  (const INTFLOAT (*)[40][2]) sbr->X_high,
1526  sbr, &sbr->data[ch],
1527  sbr->data[ch].e_a);
1528  }
1529  }
1530 
1531  /* synthesis */
1532  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1533  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1534  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1535  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1536  }
1537 
1538  if (ac->oc[1].m4ac.ps == 1) {
1539  if (sbr->ps.start) {
1540  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1541  } else {
1542  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1543  }
1544  nch = 2;
1545  }
1546 
1547  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1548  L, sbr->X[0], sbr->qmf_filter_scratch,
1549  sbr->data[0].synthesis_filterbank_samples,
1550  &sbr->data[0].synthesis_filterbank_samples_offset,
1551  downsampled);
1552  if (nch == 2)
1553  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1554  R, sbr->X[1], sbr->qmf_filter_scratch,
1555  sbr->data[1].synthesis_filterbank_samples,
1556  &sbr->data[1].synthesis_filterbank_samples_offset,
1557  downsampled);
1558 }
1559 
1561 {
1562  c->sbr_lf_gen = sbr_lf_gen;
1564  c->sbr_x_gen = sbr_x_gen;
1566 
1567 #if !USE_FIXED
1568  if(ARCH_MIPS)
1570 #endif
1571 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static int qsort_comparison_function_int16(const void *a, const void *b)
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int array_min_int16(const int16_t *array, int nel)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:276
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:121
unsigned bs_smoothing_mode
Definition: sbr.h:154
AVCodecContext * avctx
Definition: aac.h:295
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:269
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
else temp
Definition: vf_mcdeint.c:256
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:212
const char * g
Definition: vf_curves.c:112
Definition: aac.h:56
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aac.h:57
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
const char * b
Definition: vf_curves.c:113
Definition: aacsbr.h:59
AAC_SIGNE kx[2]
kx&#39;, and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:160
uint8_t noise_facs_q[3][5]
Noise scalefactors.
Definition: sbr.h:102
Definition: aacsbr.h:61
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:2852
#define src
Definition: vp8dsp.c:254
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:2843
SpectrumParameters spectrum_params
Definition: sbr.h:145
Definition: aac.h:58
Definition: aacsbr.h:60
#define USE_FIXED
Definition: aac_defines.h:25
#define AAC_RENAME_32(x)
Definition: aac_defines.h:85
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:981
float INTFLOAT
Definition: aac_defines.h:86
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
AAC_SIGNE num_patches
Definition: sbr.h:184
uint8_t
#define av_cold
Definition: attributes.h:82
AAC_FLOAT noise_facs[3][5]
Definition: sbr.h:103
float delta
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:173
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
Definition: aac.h:59
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:179
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:611
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:200
static INTFLOAT sbr_qmf_window_us[640]
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
SBRData data[2]
Definition: sbr.h:166
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
uint8_t bs_df_noise[2]
Definition: sbr.h:73
static int fixed_log(int x)
Definition: aacsbr_fixed.c:87
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:185
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:181
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
#define U(x)
Definition: vp56_arith.h:37
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
MPEG4AudioConfig m4ac
Definition: aac.h:124
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:109
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:177
#define R
Definition: huffyuvdsp.h:34
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:140
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:157
AAC_SIGNE m[2]
M&#39; and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:162
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:73
static const struct endianess table[]
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
#define ff_mdct_init
Definition: fft.h:169
#define FFMAX(a, b)
Definition: common.h:94
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
Initialize one SBR context.
unsigned bs_interpol_freq
Definition: sbr.h:153
uint8_t env_facs_q[6][48]
Envelope scalefactors.
Definition: sbr.h:99
#define AAC_RENAME(x)
Definition: aac_defines.h:84
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
unsigned f_indexnoise
Definition: sbr.h:110
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:107
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:96
uint8_t bs_freq_scale
Definition: sbr.h:51
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
static const ElemCat * elements[ELEMENT_COUNT]
Definition: signature.h:566
unsigned bs_limiter_gains
Definition: sbr.h:152
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:78
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:131
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:304
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:198
float AAC_FLOAT
Definition: aac_defines.h:90
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:202
static void aacsbr_func_ptr_init(AACSBRContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:563
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
int n
Definition: avisynth_c.h:684
uint8_t bs_freq_res[7]
Definition: sbr.h:70
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1011
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:219
if(ret< 0)
Definition: vf_mcdeint.c:279
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:128
AAC_SIGNE bs_num_env
Definition: sbr.h:69
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:200
static const int8_t ceil_log2[]
ceil(log2(index+1))
typedef void(RENAME(mix_any_func_type))
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
main external API structure.
Definition: avcodec.h:1518
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:321
static const int CONST_076923
Definition: aacsbr_fixed.c:79
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:314
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
#define W(a, i, v)
Definition: jpegls.h:124
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:195
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1043
AAC_FLOAT env_facs[6][48]
Definition: sbr.h:100
uint8_t bs_noise_bands
Definition: sbr.h:53
#define ARCH_MIPS
Definition: config.h:26
main AAC context
Definition: aac.h:293
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:165
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
uint8_t bs_stop_freq
Definition: sbr.h:44
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:175
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:162
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
#define v0
Definition: regdef.h:26
OutputConfiguration oc[2]
Definition: aac.h:356
int
#define log2f(x)
Definition: libm.h:409
#define ff_mdct_end
Definition: fft.h:170
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:102
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:186
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:105
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the entry wise product of two vectors of floats, add a third vector of floats and store the...
Definition: float_dsp.h:137
aacsbr functions pointers
Definition: sbr.h:120
static INTFLOAT sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
Definition: aacsbr.h:62
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:183
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:54
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
unsigned bs_limiter_bands
Definition: sbr.h:151
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:124
SBRDSPContext dsp
Definition: sbr.h:213
FILE * out
Definition: movenc.c:54
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:185
#define Q23(x)
Definition: aac_defines.h:94
#define av_always_inline
Definition: attributes.h:39
static int array[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:106
#define VLC_TYPE
Definition: vlc.h:24
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:44
static VLC vlc_sbr[10]
Definition: aacsbr.c:51
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:171
unsigned bs_coupling
Definition: sbr.h:156
Spectral Band Replication.
Definition: sbr.h:139
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
static av_cold void aacsbr_tableinit(void)
float min
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
PSContext ps
Definition: sbr.h:167
uint8_t bs_start_freq
Definition: sbr.h:43
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:169
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:154
static uint8_t tmp[11]
Definition: aes_ctr.c:26