101 #define IIR_CH(name, type, min, max, need_clipping) \ 102 static int iir_ch_## name(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) \ 104 AudioIIRContext *s = ctx->priv; \ 105 const double ig = s->dry_gain; \ 106 const double og = s->wet_gain; \ 107 ThreadData *td = arg; \ 108 AVFrame *in = td->in, *out = td->out; \ 109 const type *src = (const type *)in->extended_data[ch]; \ 110 double *ic = (double *)s->iir[ch].cache[0]; \ 111 double *oc = (double *)s->iir[ch].cache[1]; \ 112 const int nb_a = s->iir[ch].nb_ab[0]; \ 113 const int nb_b = s->iir[ch].nb_ab[1]; \ 114 const double *a = s->iir[ch].ab[0]; \ 115 const double *b = s->iir[ch].ab[1]; \ 116 int *clippings = &s->iir[ch].clippings; \ 117 type *dst = (type *)out->extended_data[ch]; \ 120 for (n = 0; n < in->nb_samples; n++) { \ 121 double sample = 0.; \ 124 memmove(&ic[1], &ic[0], (nb_b - 1) * sizeof(*ic)); \ 125 memmove(&oc[1], &oc[0], (nb_a - 1) * sizeof(*oc)); \ 126 ic[0] = src[n] * ig; \ 127 for (x = 0; x < nb_b; x++) \ 128 sample += b[x] * ic[x]; \ 130 for (x = 1; x < nb_a; x++) \ 131 sample -= a[x] * oc[x]; \ 135 if (need_clipping && sample < min) { \ 138 } else if (need_clipping && sample > max) { \ 149 IIR_CH(s16p, int16_t, INT16_MIN, INT16_MAX, 1)
151 IIR_CH(fltp,
float, -1., 1., 0)
152 IIR_CH(dblp,
double, -1., 1., 0)
154 #define SERIAL_IIR_CH(name, type, min, max, need_clipping) \ 155 static int iir_ch_serial_## name(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) \ 157 AudioIIRContext *s = ctx->priv; \ 158 const double ig = s->dry_gain; \ 159 const double og = s->wet_gain; \ 160 ThreadData *td = arg; \ 161 AVFrame *in = td->in, *out = td->out; \ 162 const type *src = (const type *)in->extended_data[ch]; \ 163 type *dst = (type *)out->extended_data[ch]; \ 164 IIRChannel *iir = &s->iir[ch]; \ 165 int *clippings = &iir->clippings; \ 166 int nb_biquads = (FFMAX(iir->nb_ab[0], iir->nb_ab[1]) + 1) / 2; \ 169 for (i = 0; i < nb_biquads; i++) { \ 170 const double a1 = -iir->biquads[i].a1; \ 171 const double a2 = -iir->biquads[i].a2; \ 172 const double b0 = iir->biquads[i].b0; \ 173 const double b1 = iir->biquads[i].b1; \ 174 const double b2 = iir->biquads[i].b2; \ 175 double i1 = iir->biquads[i].i1; \ 176 double i2 = iir->biquads[i].i2; \ 177 double o1 = iir->biquads[i].o1; \ 178 double o2 = iir->biquads[i].o2; \ 180 for (n = 0; n < in->nb_samples; n++) { \ 181 double sample = ig * (i ? dst[n] : src[n]); \ 182 double o0 = sample * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \ 190 if (need_clipping && o0 < min) { \ 193 } else if (need_clipping && o0 > max) { \ 200 iir->biquads[i].i1 = i1; \ 201 iir->biquads[i].i2 = i2; \ 202 iir->biquads[i].o1 = o1; \ 203 iir->biquads[i].o2 = o2; \ 222 for (p = item_str; *p && *p !=
'|'; p++) {
231 char *p, *
arg, *old_str, *prev_arg =
NULL, *saveptr =
NULL;
237 for (i = 0; i < nb_items; i++) {
238 if (!(arg =
av_strtok(p,
"|", &saveptr)))
247 if (sscanf(arg,
"%lf", &s->
iir[i].
g) != 1) {
263 char *p, *
arg, *old_str, *saveptr =
NULL;
269 for (i = 0; i < nb_items; i++) {
270 if (!(arg =
av_strtok(p,
" ", &saveptr)))
274 if (sscanf(arg,
"%lf", &dst[i]) != 1) {
288 char *p, *
arg, *old_str, *saveptr =
NULL;
294 for (i = 0; i < nb_items; i++) {
295 if (!(arg =
av_strtok(p,
" ", &saveptr)))
299 if (sscanf(arg, format, &dst[i*2], &dst[i*2+1]) != 2) {
311 static const char *
format[] = {
"%lf",
"%lf %lfi",
"%lf %lfr",
"%lf %lfd" };
316 char *p, *
arg, *old_str, *prev_arg =
NULL, *saveptr =
NULL;
325 if (!(arg =
av_strtok(p,
"|", &saveptr)))
338 if (!iir->
ab[ab] || !iir->
cache[ab]) {
362 double nwre = -wre, nwim = -wim;
366 for (i = npz; i >= 1; i--) {
367 cre = coeffs[2 * i + 0];
368 cim = coeffs[2 * i + 1];
370 coeffs[2 * i + 0] = (nwre * cre - nwim * cim) + coeffs[2 * (i - 1) + 0];
371 coeffs[2 * i + 1] = (nwre * cim + nwim * cre) + coeffs[2 * (i - 1) + 1];
376 coeffs[0] = nwre * cre - nwim * cim;
377 coeffs[1] = nwre * cim + nwim * cre;
387 for (i = 0; i < nb; i++) {
388 coeffs[2 * (i + 1) ] = 0.0;
389 coeffs[2 * (i + 1) + 1] = 0.0;
392 for (i = 0; i < nb; i++)
393 multiply(pz[2 * i], pz[2 * i + 1], nb, coeffs);
395 for (i = 0; i < nb + 1; i++) {
396 if (fabs(coeffs[2 * i + 1]) > FLT_EPSILON) {
397 av_log(ctx,
AV_LOG_ERROR,
"coeff: %lf of z^%d is not real; poles/zeros are not complex conjugates.\n",
398 coeffs[2 * i + 1], i);
409 int ch, i, j, ret = 0;
417 if (!topc || !botc) {
432 for (j = 0, i = iir->
nb_ab[1]; i >= 0; j++, i--) {
433 iir->
ab[1][j] = topc[2 * i];
437 for (j = 0, i = iir->
nb_ab[0]; i >= 0; j++, i--) {
438 iir->
ab[0][j] = botc[2 * i];
460 int current_biquad = 0;
466 while (nb_biquads--) {
467 Pair outmost_pole = { -1, -1 };
468 Pair nearest_zero = { -1, -1 };
469 double zeros[4] = { 0 };
470 double poles[4] = { 0 };
473 double min_distance = DBL_MAX;
477 for (i = 0; i < iir->
nb_ab[0]; i++) {
482 mag =
hypot(iir->
ab[0][2 * i], iir->
ab[0][2 * i + 1]);
490 for (i = 0; i < iir->
nb_ab[1]; i++) {
494 if (iir->
ab[0][2 * i ] == iir->
ab[0][2 * outmost_pole.
a ] &&
495 iir->
ab[0][2 * i + 1] == -iir->
ab[0][2 * outmost_pole.
a + 1]) {
503 if (outmost_pole.
a < 0 || outmost_pole.
b < 0)
506 for (i = 0; i < iir->
nb_ab[1]; i++) {
511 distance =
hypot(iir->
ab[0][2 * outmost_pole.
a ] - iir->
ab[1][2 * i ],
512 iir->
ab[0][2 * outmost_pole.
a + 1] - iir->
ab[1][2 * i + 1]);
514 if (distance < min_distance) {
520 for (i = 0; i < iir->
nb_ab[1]; i++) {
524 if (iir->
ab[1][2 * i ] == iir->
ab[1][2 * nearest_zero.
a ] &&
525 iir->
ab[1][2 * i + 1] == -iir->
ab[1][2 * nearest_zero.
a + 1]) {
533 if (nearest_zero.
a < 0 || nearest_zero.
b < 0)
536 poles[0] = iir->
ab[0][2 * outmost_pole.
a ];
537 poles[1] = iir->
ab[0][2 * outmost_pole.
a + 1];
539 zeros[0] = iir->
ab[1][2 * nearest_zero.
a ];
540 zeros[1] = iir->
ab[1][2 * nearest_zero.
a + 1];
542 if (nearest_zero.
a == nearest_zero.
b && outmost_pole.
a == outmost_pole.
b) {
549 poles[2] = iir->
ab[0][2 * outmost_pole.
b ];
550 poles[3] = iir->
ab[0][2 * outmost_pole.
b + 1];
552 zeros[2] = iir->
ab[1][2 * nearest_zero.
b ];
553 zeros[3] = iir->
ab[1][2 * nearest_zero.
b + 1];
556 ret =
expand(ctx, zeros, 2, b);
560 ret =
expand(ctx, poles, 2, a);
564 iir->
ab[0][2 * outmost_pole.
a] = iir->
ab[0][2 * outmost_pole.
a + 1] =
NAN;
565 iir->
ab[0][2 * outmost_pole.
b] = iir->
ab[0][2 * outmost_pole.
b + 1] =
NAN;
566 iir->
ab[1][2 * nearest_zero.
a] = iir->
ab[1][2 * nearest_zero.
a + 1] =
NAN;
567 iir->
ab[1][2 * nearest_zero.
b] = iir->
ab[1][2 * nearest_zero.
b + 1] =
NAN;
570 iir->
biquads[current_biquad].
a1 = a[2] / a[4];
571 iir->
biquads[current_biquad].
a2 = a[0] / a[4];
572 iir->
biquads[current_biquad].
b0 = b[4] / a[4] * (current_biquad ? 1.0 : iir->
g);
573 iir->
biquads[current_biquad].
b1 = b[2] / a[4] * (current_biquad ? 1.0 : iir->
g);
574 iir->
biquads[current_biquad].
b2 = b[0] / a[4] * (current_biquad ? 1.0 : iir->
g);
600 for (n = 0; n < iir->
nb_ab[0]; n++) {
601 double r = iir->
ab[0][2*
n];
602 double angle = iir->
ab[0][2*n+1];
604 iir->
ab[0][2*
n] = r * cos(angle);
605 iir->
ab[0][2*n+1] = r * sin(angle);
608 for (n = 0; n < iir->
nb_ab[1]; n++) {
609 double r = iir->
ab[1][2*
n];
610 double angle = iir->
ab[1][2*n+1];
612 iir->
ab[1][2*
n] = r * cos(angle);
613 iir->
ab[1][2*n+1] = r * sin(angle);
627 for (n = 0; n < iir->
nb_ab[0]; n++) {
628 double r = iir->
ab[0][2*
n];
629 double angle =
M_PI*iir->
ab[0][2*n+1]/180.;
631 iir->
ab[0][2*
n] = r * cos(angle);
632 iir->
ab[0][2*n+1] = r * sin(angle);
635 for (n = 0; n < iir->
nb_ab[1]; n++) {
636 double r = iir->
ab[1][2*
n];
637 double angle =
M_PI*iir->
ab[1][2*n+1]/180.;
639 iir->
ab[1][2*
n] = r * cos(angle);
640 iir->
ab[1][2*n+1] = r * sin(angle);
671 }
else if (s->
format == 3) {
676 av_log(ctx,
AV_LOG_WARNING,
"tf coefficients format is not recommended for too high number of zeros/poles.\n");
679 av_log(ctx,
AV_LOG_WARNING,
"Direct processsing is not recommended for zp coefficients format.\n");
685 av_log(ctx,
AV_LOG_ERROR,
"Serial cascading is not implemented for transfer function.\n");
696 for (ch = 0; ch < inlink->
channels; ch++) {
699 for (i = 1; i < iir->
nb_ab[0]; i++) {
700 iir->
ab[0][i] /= iir->
ab[0][0];
703 for (i = 0; i < iir->
nb_ab[1]; i++) {
704 iir->
ab[1][i] *= iir->
g / iir->
ab[0][0];
742 for (ch = 0; ch < outlink->
channels; ch++) {
781 for (ch = 0; ch < s->
channels; ch++) {
811 #define OFFSET(x) offsetof(AudioIIRContext, x) 812 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 823 {
"pr",
"Z-plane zeros/poles (polar radians)", 0,
AV_OPT_TYPE_CONST, {.i64=2}, 0, 0,
AF,
"format" },
824 {
"pd",
"Z-plane zeros/poles (polar degrees)", 0,
AV_OPT_TYPE_CONST, {.i64=3}, 0, 0,
AF,
"format" },
829 {
"dbl",
"double-precision floating-point", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
AF,
"precision" },
830 {
"flt",
"single-precision floating-point", 0,
AV_OPT_TYPE_CONST, {.i64=1}, 0, 0,
AF,
"precision" },
840 .description =
NULL_IF_CONFIG_SMALL(
"Apply Infinite Impulse Response filter with supplied coefficients."),
842 .priv_class = &aiir_class,
static const char * format[]
This structure describes decoded (raw) audio or video data.
enum AVSampleFormat sample_format
#define AV_LOG_WARNING
Something somehow does not look correct.
Main libavfilter public API header.
static void convert_pd2zp(AVFilterContext *ctx, int channels)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
static int decompose_zp2biquads(AVFilterContext *ctx, int channels)
#define SERIAL_IIR_CH(name, type, min, max, need_clipping)
static void count_coefficients(char *item_str, int *nb_items)
static int config_output(AVFilterLink *outlink)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
static int process(struct ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed)
const char * name
Pad name.
AVFilterLink ** inputs
array of pointers to input links
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static av_cold int init(AVFilterContext *ctx)
static int expand(AVFilterContext *ctx, double *pz, int nb, double *coeffs)
#define IIR_CH(name, type, min, max, need_clipping)
#define AV_LOG_VERBOSE
Detailed information.
static int read_tf_coefficients(AVFilterContext *ctx, char *item_str, int nb_items, double *dst)
static int query_formats(AVFilterContext *ctx)
A filter pad used for either input or output.
A link between two filters.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
static int read_channels(AVFilterContext *ctx, int channels, uint8_t *item_str, int ab)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
simple assert() macros that are a bit more flexible than ISO C assert().
static float distance(float x, float y, int band)
static av_const double hypot(double x, double y)
static int convert_zp2tf(AVFilterContext *ctx, int channels)
AVFilterContext * src
source filter
int format
agreed upon media format
A list of supported channel layouts.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
char * av_strdup(const char *s)
Duplicate a string.
AVSampleFormat
Audio sample formats.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Describe the class of an AVClass context structure.
static int read_gains(AVFilterContext *ctx, char *item_str, int nb_items)
static void convert_pr2zp(AVFilterContext *ctx, int channels)
const char * name
Filter name.
static int read_zp_coefficients(AVFilterContext *ctx, char *item_str, int nb_items, double *dst, const char *format)
static av_cold void uninit(AVFilterContext *ctx)
static const AVFilterPad inputs[]
AVFilterLink ** outputs
array of pointers to output links
enum MovChannelLayoutTag * layouts
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
static const AVFilterPad outputs[]
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok()...
int(* iir_channel)(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
int channels
Number of channels.
avfilter_execute_func * execute
static const int16_t coeffs[]
AVFilterContext * dst
dest filter
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static enum AVSampleFormat sample_fmts[]
AVFILTER_DEFINE_CLASS(aiir)
int nb_samples
number of audio samples (per channel) described by this frame
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static const AVOption aiir_options[]
static void multiply(double wre, double wim, int npz, double *coeffs)