FFmpeg  4.0
avf_showfreqs.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2015 Paul B Mahol
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <float.h>
22 #include <math.h>
23 
24 #include "libavcodec/avfft.h"
25 #include "libavutil/audio_fifo.h"
26 #include "libavutil/avassert.h"
27 #include "libavutil/avstring.h"
29 #include "libavutil/intreadwrite.h"
30 #include "libavutil/opt.h"
31 #include "libavutil/parseutils.h"
32 #include "audio.h"
33 #include "video.h"
34 #include "avfilter.h"
35 #include "internal.h"
36 #include "window_func.h"
37 
42 
43 typedef struct ShowFreqsContext {
44  const AVClass *class;
45  int w, h;
46  int mode;
47  int cmode;
48  int fft_bits;
49  int ascale, fscale;
50  int avg;
51  int win_func;
54  float **avg_data;
56  float overlap;
57  float minamp;
58  int hop_size;
60  int nb_freq;
61  int win_size;
62  float scale;
63  char *colors;
65  int64_t pts;
67 
68 #define OFFSET(x) offsetof(ShowFreqsContext, x)
69 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
70 
71 static const AVOption showfreqs_options[] = {
72  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS },
73  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS },
74  { "mode", "set display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BAR}, 0, NB_MODES-1, FLAGS, "mode" },
75  { "line", "show lines", 0, AV_OPT_TYPE_CONST, {.i64=LINE}, 0, 0, FLAGS, "mode" },
76  { "bar", "show bars", 0, AV_OPT_TYPE_CONST, {.i64=BAR}, 0, 0, FLAGS, "mode" },
77  { "dot", "show dots", 0, AV_OPT_TYPE_CONST, {.i64=DOT}, 0, 0, FLAGS, "mode" },
78  { "ascale", "set amplitude scale", OFFSET(ascale), AV_OPT_TYPE_INT, {.i64=AS_LOG}, 0, NB_ASCALES-1, FLAGS, "ascale" },
79  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=AS_LINEAR}, 0, 0, FLAGS, "ascale" },
80  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=AS_SQRT}, 0, 0, FLAGS, "ascale" },
81  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=AS_CBRT}, 0, 0, FLAGS, "ascale" },
82  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=AS_LOG}, 0, 0, FLAGS, "ascale" },
83  { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=FS_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
84  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=FS_LINEAR}, 0, 0, FLAGS, "fscale" },
85  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_LOG}, 0, 0, FLAGS, "fscale" },
86  { "rlog", "reverse logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_RLOG}, 0, 0, FLAGS, "fscale" },
87  { "win_size", "set window size", OFFSET(fft_bits), AV_OPT_TYPE_INT, {.i64=11}, 4, 16, FLAGS, "fft" },
88  { "w16", 0, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "fft" },
89  { "w32", 0, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, FLAGS, "fft" },
90  { "w64", 0, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, FLAGS, "fft" },
91  { "w128", 0, 0, AV_OPT_TYPE_CONST, {.i64=7}, 0, 0, FLAGS, "fft" },
92  { "w256", 0, 0, AV_OPT_TYPE_CONST, {.i64=8}, 0, 0, FLAGS, "fft" },
93  { "w512", 0, 0, AV_OPT_TYPE_CONST, {.i64=9}, 0, 0, FLAGS, "fft" },
94  { "w1024", 0, 0, AV_OPT_TYPE_CONST, {.i64=10}, 0, 0, FLAGS, "fft" },
95  { "w2048", 0, 0, AV_OPT_TYPE_CONST, {.i64=11}, 0, 0, FLAGS, "fft" },
96  { "w4096", 0, 0, AV_OPT_TYPE_CONST, {.i64=12}, 0, 0, FLAGS, "fft" },
97  { "w8192", 0, 0, AV_OPT_TYPE_CONST, {.i64=13}, 0, 0, FLAGS, "fft" },
98  { "w16384", 0, 0, AV_OPT_TYPE_CONST, {.i64=14}, 0, 0, FLAGS, "fft" },
99  { "w32768", 0, 0, AV_OPT_TYPE_CONST, {.i64=15}, 0, 0, FLAGS, "fft" },
100  { "w65536", 0, 0, AV_OPT_TYPE_CONST, {.i64=16}, 0, 0, FLAGS, "fft" },
101  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64=WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
102  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
103  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
104  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
105  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
106  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
107  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
108  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
109  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
110  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
111  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
112  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
113  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
114  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
115  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
116  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
117  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
118  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
119  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
120  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
121  { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1.}, 0., 1., FLAGS },
122  { "averaging", "set time averaging", OFFSET(avg), AV_OPT_TYPE_INT, {.i64=1}, 0, INT32_MAX, FLAGS },
123  { "colors", "set channels colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, FLAGS },
124  { "cmode", "set channel mode", OFFSET(cmode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_CMODES-1, FLAGS, "cmode" },
125  { "combined", "show all channels in same window", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "cmode" },
126  { "separate", "show each channel in own window", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "cmode" },
127  { "minamp", "set minimum amplitude", OFFSET(minamp), AV_OPT_TYPE_FLOAT, {.dbl=1e-6}, FLT_MIN, 1e-6, FLAGS },
128  { NULL }
129 };
130 
131 AVFILTER_DEFINE_CLASS(showfreqs);
132 
134 {
137  AVFilterLink *inlink = ctx->inputs[0];
138  AVFilterLink *outlink = ctx->outputs[0];
140  static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE };
141  int ret;
142 
143  /* set input audio formats */
144  formats = ff_make_format_list(sample_fmts);
145  if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0)
146  return ret;
147 
148  layouts = ff_all_channel_layouts();
149  if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0)
150  return ret;
151 
152  formats = ff_all_samplerates();
153  if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0)
154  return ret;
155 
156  /* set output video format */
157  formats = ff_make_format_list(pix_fmts);
158  if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
159  return ret;
160 
161  return 0;
162 }
163 
165 {
166  ShowFreqsContext *s = ctx->priv;
167 
168  s->pts = AV_NOPTS_VALUE;
169 
170  return 0;
171 }
172 
173 static int config_output(AVFilterLink *outlink)
174 {
175  AVFilterContext *ctx = outlink->src;
176  AVFilterLink *inlink = ctx->inputs[0];
177  ShowFreqsContext *s = ctx->priv;
178  float overlap;
179  int i;
180 
181  s->nb_freq = 1 << (s->fft_bits - 1);
182  s->win_size = s->nb_freq << 1;
184  av_fft_end(s->fft);
185  s->fft = av_fft_init(s->fft_bits, 0);
186  if (!s->fft) {
187  av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
188  "The window size might be too high.\n");
189  return AVERROR(ENOMEM);
190  }
191 
192  /* FFT buffers: x2 for each (display) channel buffer.
193  * Note: we use free and malloc instead of a realloc-like function to
194  * make sure the buffer is aligned in memory for the FFT functions. */
195  for (i = 0; i < s->nb_channels; i++) {
196  av_freep(&s->fft_data[i]);
197  av_freep(&s->avg_data[i]);
198  }
199  av_freep(&s->fft_data);
200  av_freep(&s->avg_data);
201  s->nb_channels = inlink->channels;
202 
203  s->fft_data = av_calloc(s->nb_channels, sizeof(*s->fft_data));
204  if (!s->fft_data)
205  return AVERROR(ENOMEM);
206  s->avg_data = av_calloc(s->nb_channels, sizeof(*s->avg_data));
207  if (!s->fft_data)
208  return AVERROR(ENOMEM);
209  for (i = 0; i < s->nb_channels; i++) {
210  s->fft_data[i] = av_calloc(s->win_size, sizeof(**s->fft_data));
211  s->avg_data[i] = av_calloc(s->nb_freq, sizeof(**s->avg_data));
212  if (!s->fft_data[i] || !s->avg_data[i])
213  return AVERROR(ENOMEM);
214  }
215 
216  /* pre-calc windowing function */
218  sizeof(*s->window_func_lut));
219  if (!s->window_func_lut)
220  return AVERROR(ENOMEM);
222  if (s->overlap == 1.)
223  s->overlap = overlap;
224  s->hop_size = (1. - s->overlap) * s->win_size;
225  if (s->hop_size < 1) {
226  av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
227  return AVERROR(EINVAL);
228  }
229 
230  for (s->scale = 0, i = 0; i < s->win_size; i++) {
231  s->scale += s->window_func_lut[i] * s->window_func_lut[i];
232  }
233 
234  outlink->frame_rate = av_make_q(inlink->sample_rate, s->win_size * (1.-s->overlap));
235  outlink->sample_aspect_ratio = (AVRational){1,1};
236  outlink->w = s->w;
237  outlink->h = s->h;
238 
239  s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
240  if (!s->fifo)
241  return AVERROR(ENOMEM);
242  return 0;
243 }
244 
245 static inline void draw_dot(AVFrame *out, int x, int y, uint8_t fg[4])
246 {
247 
248  uint32_t color = AV_RL32(out->data[0] + y * out->linesize[0] + x * 4);
249 
250  if ((color & 0xffffff) != 0)
251  AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg) | color);
252  else
253  AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
254 }
255 
256 static int get_sx(ShowFreqsContext *s, int f)
257 {
258  switch (s->fscale) {
259  case FS_LINEAR:
260  return (s->w/(float)s->nb_freq)*f;
261  case FS_LOG:
262  return s->w-pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.));
263  case FS_RLOG:
264  return pow(s->w, f/(s->nb_freq-1.));
265  }
266 
267  return 0;
268 }
269 
270 static float get_bsize(ShowFreqsContext *s, int f)
271 {
272  switch (s->fscale) {
273  case FS_LINEAR:
274  return s->w/(float)s->nb_freq;
275  case FS_LOG:
276  return pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.))-
277  pow(s->w, (s->nb_freq-f-2)/(s->nb_freq-1.));
278  case FS_RLOG:
279  return pow(s->w, (f+1)/(s->nb_freq-1.))-
280  pow(s->w, f /(s->nb_freq-1.));
281  }
282 
283  return 1.;
284 }
285 
286 static inline void plot_freq(ShowFreqsContext *s, int ch,
287  double a, int f, uint8_t fg[4], int *prev_y,
288  AVFrame *out, AVFilterLink *outlink)
289 {
290  const int w = s->w;
291  const float min = s->minamp;
292  const float avg = s->avg_data[ch][f];
293  const float bsize = get_bsize(s, f);
294  const int sx = get_sx(s, f);
295  int end = outlink->h;
296  int x, y, i;
297 
298  switch(s->ascale) {
299  case AS_SQRT:
300  a = 1.0 - sqrt(a);
301  break;
302  case AS_CBRT:
303  a = 1.0 - cbrt(a);
304  break;
305  case AS_LOG:
306  a = log(av_clipd(a, min, 1)) / log(min);
307  break;
308  case AS_LINEAR:
309  a = 1.0 - a;
310  break;
311  }
312 
313  switch (s->cmode) {
314  case COMBINED:
315  y = a * outlink->h - 1;
316  break;
317  case SEPARATE:
318  end = (outlink->h / s->nb_channels) * (ch + 1);
319  y = (outlink->h / s->nb_channels) * ch + a * (outlink->h / s->nb_channels) - 1;
320  break;
321  default:
322  av_assert0(0);
323  }
324  if (y < 0)
325  return;
326 
327  switch (s->avg) {
328  case 0:
329  y = s->avg_data[ch][f] = !outlink->frame_count_in ? y : FFMIN(avg, y);
330  break;
331  case 1:
332  break;
333  default:
334  s->avg_data[ch][f] = avg + y * (y - avg) / (FFMIN(outlink->frame_count_in + 1, s->avg) * y);
335  y = s->avg_data[ch][f];
336  break;
337  }
338 
339  switch(s->mode) {
340  case LINE:
341  if (*prev_y == -1) {
342  *prev_y = y;
343  }
344  if (y <= *prev_y) {
345  for (x = sx + 1; x < sx + bsize && x < w; x++)
346  draw_dot(out, x, y, fg);
347  for (i = y; i <= *prev_y; i++)
348  draw_dot(out, sx, i, fg);
349  } else {
350  for (i = *prev_y; i <= y; i++)
351  draw_dot(out, sx, i, fg);
352  for (x = sx + 1; x < sx + bsize && x < w; x++)
353  draw_dot(out, x, i - 1, fg);
354  }
355  *prev_y = y;
356  break;
357  case BAR:
358  for (x = sx; x < sx + bsize && x < w; x++)
359  for (i = y; i < end; i++)
360  draw_dot(out, x, i, fg);
361  break;
362  case DOT:
363  for (x = sx; x < sx + bsize && x < w; x++)
364  draw_dot(out, x, y, fg);
365  break;
366  }
367 }
368 
369 static int plot_freqs(AVFilterLink *inlink, AVFrame *in)
370 {
371  AVFilterContext *ctx = inlink->dst;
372  AVFilterLink *outlink = ctx->outputs[0];
373  ShowFreqsContext *s = ctx->priv;
374  const int win_size = s->win_size;
375  char *colors, *color, *saveptr = NULL;
376  AVFrame *out;
377  int ch, n;
378 
379  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
380  if (!out)
381  return AVERROR(ENOMEM);
382 
383  for (n = 0; n < outlink->h; n++)
384  memset(out->data[0] + out->linesize[0] * n, 0, outlink->w * 4);
385 
386  /* fill FFT input with the number of samples available */
387  for (ch = 0; ch < s->nb_channels; ch++) {
388  const float *p = (float *)in->extended_data[ch];
389 
390  for (n = 0; n < in->nb_samples; n++) {
391  s->fft_data[ch][n].re = p[n] * s->window_func_lut[n];
392  s->fft_data[ch][n].im = 0;
393  }
394  for (; n < win_size; n++) {
395  s->fft_data[ch][n].re = 0;
396  s->fft_data[ch][n].im = 0;
397  }
398  }
399 
400  /* run FFT on each samples set */
401  for (ch = 0; ch < s->nb_channels; ch++) {
402  av_fft_permute(s->fft, s->fft_data[ch]);
403  av_fft_calc(s->fft, s->fft_data[ch]);
404  }
405 
406 #define RE(x, ch) s->fft_data[ch][x].re
407 #define IM(x, ch) s->fft_data[ch][x].im
408 #define M(a, b) (sqrt((a) * (a) + (b) * (b)))
409 
410  colors = av_strdup(s->colors);
411  if (!colors) {
412  av_frame_free(&out);
413  return AVERROR(ENOMEM);
414  }
415 
416  for (ch = 0; ch < s->nb_channels; ch++) {
417  uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
418  int prev_y = -1, f;
419  double a;
420 
421  color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr);
422  if (color)
423  av_parse_color(fg, color, -1, ctx);
424 
425  a = av_clipd(M(RE(0, ch), 0) / s->scale, 0, 1);
426  plot_freq(s, ch, a, 0, fg, &prev_y, out, outlink);
427 
428  for (f = 1; f < s->nb_freq; f++) {
429  a = av_clipd(M(RE(f, ch), IM(f, ch)) / s->scale, 0, 1);
430 
431  plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
432  }
433  }
434 
435  av_free(colors);
436  out->pts = in->pts;
437  out->sample_aspect_ratio = (AVRational){1,1};
438  return ff_filter_frame(outlink, out);
439 }
440 
441 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
442 {
443  AVFilterContext *ctx = inlink->dst;
444  ShowFreqsContext *s = ctx->priv;
445  AVFrame *fin = NULL;
446  int consumed = 0;
447  int ret = 0;
448 
449  if (s->pts == AV_NOPTS_VALUE)
450  s->pts = in->pts - av_audio_fifo_size(s->fifo);
451 
452  av_audio_fifo_write(s->fifo, (void **)in->extended_data, in->nb_samples);
453  while (av_audio_fifo_size(s->fifo) >= s->win_size) {
454  fin = ff_get_audio_buffer(inlink, s->win_size);
455  if (!fin) {
456  ret = AVERROR(ENOMEM);
457  goto fail;
458  }
459 
460  fin->pts = s->pts + consumed;
461  consumed += s->hop_size;
462  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
463  if (ret < 0)
464  goto fail;
465 
466  ret = plot_freqs(inlink, fin);
467  av_frame_free(&fin);
469  if (ret < 0)
470  goto fail;
471  }
472 
473 fail:
474  s->pts = AV_NOPTS_VALUE;
475  av_frame_free(&fin);
476  av_frame_free(&in);
477  return ret;
478 }
479 
481 {
482  ShowFreqsContext *s = ctx->priv;
483  int i;
484 
485  av_fft_end(s->fft);
486  for (i = 0; i < s->nb_channels; i++) {
487  if (s->fft_data)
488  av_freep(&s->fft_data[i]);
489  if (s->avg_data)
490  av_freep(&s->avg_data[i]);
491  }
492  av_freep(&s->fft_data);
493  av_freep(&s->avg_data);
496 }
497 
498 static const AVFilterPad showfreqs_inputs[] = {
499  {
500  .name = "default",
501  .type = AVMEDIA_TYPE_AUDIO,
502  .filter_frame = filter_frame,
503  },
504  { NULL }
505 };
506 
507 static const AVFilterPad showfreqs_outputs[] = {
508  {
509  .name = "default",
510  .type = AVMEDIA_TYPE_VIDEO,
511  .config_props = config_output,
512  },
513  { NULL }
514 };
515 
517  .name = "showfreqs",
518  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a frequencies video output."),
519  .init = init,
520  .uninit = uninit,
521  .query_formats = query_formats,
522  .priv_size = sizeof(ShowFreqsContext),
523  .inputs = showfreqs_inputs,
524  .outputs = showfreqs_outputs,
525  .priv_class = &showfreqs_class,
526 };
float, planar
Definition: samplefmt.h:69
#define NULL
Definition: coverity.c:32
FFTContext * fft
Definition: avf_showfreqs.c:52
const char * s
Definition: avisynth_c.h:768
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
Definition: audio_fifo.c:59
static int plot_freqs(AVFilterLink *inlink, AVFrame *in)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:218
#define av_realloc_f(p, o, n)
static av_cold int init(AVFilterContext *ctx)
AVOption.
Definition: opt.h:246
av_cold void av_fft_end(FFTContext *s)
Definition: avfft.c:48
Main libavfilter public API header.
#define IM(x, ch)
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
Definition: audio_fifo.c:45
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
FFTSample re
Definition: avfft.h:38
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
Definition: avfft.c:38
static void generate_window_func(float *lut, int N, int win_func, float *overlap)
Definition: window_func.h:35
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:244
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
const char * name
Pad name.
Definition: internal.h:60
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
AVFilter ff_avf_showfreqs
AmplitudeScale
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_channel_layouts_ref(AVFilterChannelLayouts *f, AVFilterChannelLayouts **ref)
Add *ref as a new reference to f.
Definition: formats.c:435
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1080
uint8_t
#define av_cold
Definition: attributes.h:82
AVOptions.
static const AVFilterPad showfreqs_outputs[]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:92
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:311
static int get_sx(ShowFreqsContext *s, int f)
FFTComplex ** fft_data
Definition: avf_showfreqs.c:53
#define av_log(a,...)
int av_parse_color(uint8_t *rgba_color, const char *color_string, int slen, void *log_ctx)
Put the RGBA values that correspond to color_string in rgba_color.
Definition: parseutils.c:354
A filter pad used for either input or output.
Definition: internal.h:54
static int query_formats(AVFilterContext *ctx)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
static float get_bsize(ShowFreqsContext *s, int f)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:86
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
void * priv
private data for use by the filter
Definition: avfilter.h:353
#define cbrt
Definition: tablegen.h:35
simple assert() macros that are a bit more flexible than ISO C assert().
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
Definition: avfft.c:28
#define OFFSET(x)
Definition: avf_showfreqs.c:68
#define fail()
Definition: checkasm.h:116
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:89
Context for an Audio FIFO Buffer.
Definition: audio_fifo.c:34
AVFILTER_DEFINE_CLASS(showfreqs)
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
Definition: audio_fifo.c:228
Definition: fft.h:88
audio channel layout utility functions
#define FFMIN(a, b)
Definition: common.h:96
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:440
AVFormatContext * ctx
Definition: movenc.c:48
#define AV_RL32
Definition: intreadwrite.h:146
int n
Definition: avisynth_c.h:684
static int config_output(AVFilterLink *outlink)
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
if(ret< 0)
Definition: vf_mcdeint.c:279
FrequencyScale
Definition: avf_showfreqs.c:40
AVFilterChannelLayouts * ff_all_channel_layouts(void)
Construct an empty AVFilterChannelLayouts/AVFilterFormats struct – representing any channel layout (...
Definition: formats.c:401
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
A list of supported channel layouts.
Definition: formats.h:85
static void draw_dot(AVFrame *out, int x, int y, uint8_t fg[4])
static av_cold void uninit(AVFilterContext *ctx)
float * window_func_lut
Definition: avf_showfreqs.c:55
char * av_strdup(const char *s)
Duplicate a string.
Definition: mem.c:251
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static const AVOption showfreqs_options[]
Definition: avf_showfreqs.c:71
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:249
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
FFT functions.
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
Definition: frame.h:306
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
static const AVFilterPad showfreqs_inputs[]
Rational number (pair of numerator and denominator).
Definition: rational.h:58
const char * name
Filter name.
Definition: avfilter.h:148
offset must point to two consecutive integers
Definition: opt.h:233
misc parsing utilities
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:266
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:395
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:232
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
Definition: audio_fifo.c:112
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
Definition: audio_fifo.c:201
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok()...
Definition: avstring.c:184
FFTSample im
Definition: avfft.h:38
ChannelMode
Definition: avf_showfreqs.c:39
#define M(a, b)
#define av_free(p)
Audio FIFO Buffer.
A list of supported formats for one end of a filter link.
Definition: formats.h:64
#define RE(x, ch)
int av_audio_fifo_peek(AVAudioFifo *af, void **data, int nb_samples)
Peek data from an AVAudioFifo.
Definition: audio_fifo.c:138
An instance of a filter.
Definition: avfilter.h:338
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
static void plot_freq(ShowFreqsContext *s, int ch, double a, int f, uint8_t fg[4], int *prev_y, AVFrame *out, AVFilterLink *outlink)
FILE * out
Definition: movenc.c:54
#define av_freep(p)
formats
Definition: signature.h:48
internal API functions
#define FLAGS
Definition: avf_showfreqs.c:69
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:265
float min
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
Definition: avfft.c:43
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
AVAudioFifo * fifo
Definition: avf_showfreqs.c:64
mode
Use these values in ebur128_init (or&#39;ed).
Definition: ebur128.h:83
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:284
for(j=16;j >0;--j)
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
#define AV_WL32(p, v)
Definition: intreadwrite.h:426
DisplayMode