from mlflow.entities._mlflow_object import _MLflowObject
from mlflow.entities.experiment_tag import ExperimentTag
from mlflow.protos.service_pb2 import Experiment as ProtoExperiment,\
ExperimentTag as ProtoExperimentTag
[docs]class Experiment(_MLflowObject):
"""
Experiment object.
"""
DEFAULT_EXPERIMENT_NAME = "Default"
def __init__(self, experiment_id, name, artifact_location, lifecycle_stage, tags=None):
super(Experiment, self).__init__()
self._experiment_id = experiment_id
self._name = name
self._artifact_location = artifact_location
self._lifecycle_stage = lifecycle_stage
self._tags = {tag.key: tag.value for tag in (tags or [])}
@property
def experiment_id(self):
"""String ID of the experiment."""
return self._experiment_id
@property
def name(self):
"""String name of the experiment."""
return self._name
def _set_name(self, new_name):
self._name = new_name
@property
def artifact_location(self):
"""String corresponding to the root artifact URI for the experiment."""
return self._artifact_location
@property
def lifecycle_stage(self):
"""Lifecycle stage of the experiment. Can either be 'active' or 'deleted'."""
return self._lifecycle_stage
@property
def tags(self):
"""Tags that have been set on the experiment."""
return self._tags
def _add_tag(self, tag):
self._tags[tag.key] = tag.value
[docs] @classmethod
def from_proto(cls, proto):
experiment = cls(proto.experiment_id,
proto.name,
proto.artifact_location,
proto.lifecycle_stage)
for proto_tag in proto.tags:
experiment._add_tag(ExperimentTag.from_proto(proto_tag))
return experiment
[docs] def to_proto(self):
experiment = ProtoExperiment()
experiment.experiment_id = self.experiment_id
experiment.name = self.name
experiment.artifact_location = self.artifact_location
experiment.lifecycle_stage = self.lifecycle_stage
experiment.tags.extend(
[ProtoExperimentTag(key=key, value=val) for key, val in self._tags.items()])
return experiment