Shortcuts

Source code for torch.autograd.grad_mode

import torch
import functools


[docs]class no_grad(object): r"""Context-manager that disabled gradient calculation. Disabling gradient calculation is useful for inference, when you are sure that you will not call :meth:`Tensor.backward()`. It will reduce memory consumption for computations that would otherwise have `requires_grad=True`. In this mode, the result of every computation will have `requires_grad=False`, even when the inputs have `requires_grad=True`. Also functions as a decorator. Example:: >>> x = torch.tensor([1], requires_grad=True) >>> with torch.no_grad(): ... y = x * 2 >>> y.requires_grad False >>> @torch.no_grad() ... def doubler(x): ... return x * 2 >>> z = doubler(x) >>> z.requires_grad False """ def __enter__(self): self.prev = torch.is_grad_enabled() torch._C.set_grad_enabled(False) def __exit__(self, *args): torch.set_grad_enabled(self.prev) return False def __call__(self, func): @functools.wraps(func) def decorate_no_grad(*args, **kwargs): with self: return func(*args, **kwargs) return decorate_no_grad
[docs]class enable_grad(object): r"""Context-manager that enables gradient calculation. Enables gradient calculation inside a :class:`~no_grad` context. This has no effect outside of :class:`~no_grad`. Also functions as a decorator. Example:: >>> x = torch.tensor([1], requires_grad=True) >>> with torch.no_grad(): ... with torch.enable_grad(): ... y = x * 2 >>> y.requires_grad True >>> y.backward() >>> x.grad >>> @torch.enable_grad() ... def doubler(x): ... return x * 2 >>> with torch.no_grad(): ... z = doubler(x) >>> z.requires_grad True """ def __enter__(self): self.prev = torch.is_grad_enabled() torch._C.set_grad_enabled(True) def __exit__(self, *args): torch.set_grad_enabled(self.prev) return False def __call__(self, func): @functools.wraps(func) def decorate_enable_grad(*args, **kwargs): with self: return func(*args, **kwargs) return decorate_enable_grad
[docs]class set_grad_enabled(object): r"""Context-manager that sets gradient calculation to on or off. ``set_grad_enabled`` will enable or disable grads based on its argument :attr:`mode`. It can be used as a context-manager or as a function. Arguments: mode (bool): Flag whether to enable grad (``True``), or disable (``False``). This can be used to conditionally enable gradients. Example:: >>> x = torch.tensor([1], requires_grad=True) >>> is_train = False >>> with torch.set_grad_enabled(is_train): ... y = x * 2 >>> y.requires_grad False >>> torch.set_grad_enabled(True) >>> y = x * 2 >>> y.requires_grad True >>> torch.set_grad_enabled(False) >>> y = x * 2 >>> y.requires_grad False """ def __init__(self, mode): self.prev = torch.is_grad_enabled() torch._C.set_grad_enabled(mode) def __enter__(self): pass def __exit__(self, *args): torch.set_grad_enabled(self.prev) return False

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources