Shortcuts

Source code for torch.cuda

r"""
This package adds support for CUDA tensor types, that implement the same
function as CPU tensors, but they utilize GPUs for computation.

It is lazily initialized, so you can always import it, and use
:func:`is_available()` to determine if your system supports CUDA.

:ref:`cuda-semantics` has more details about working with CUDA.
"""

import contextlib
import platform
import ctypes
import os
import torch
import traceback
import warnings
from torch._six import raise_from
from subprocess import Popen, PIPE
from multiprocessing.util import register_after_fork as _register_after_fork
from ._utils import _get_device_index

_initialized = False
_queued_calls = []  # don't invoke these until initialization occurs
_in_bad_fork = False  # this global is also used in torch.manual_seed
_original_pid = False
_cudart = None


def find_cuda_windows_lib():
    proc = Popen(['where', 'cudart64*.dll'], stdout=PIPE, stderr=PIPE, stdin=PIPE)
    out, err = proc.communicate()
    out = out.decode().strip()
    if len(out) > 0:
        if out.find('\r\n') != -1:
            out = out.split('\r\n')[0]
        cuda_lib_name = os.path.basename(out)
        cuda_lib = os.path.splitext(cuda_lib_name)[0]
        cuda_lib = str(cuda_lib)
        return ctypes.cdll.LoadLibrary(cuda_lib)
    else:
        return None


[docs]def is_available(): r"""Returns a bool indicating if CUDA is currently available.""" if (not hasattr(torch._C, '_cuda_isDriverSufficient') or not torch._C._cuda_isDriverSufficient()): return False return torch._C._cuda_getDeviceCount() > 0
def _sleep(cycles): torch._C._cuda_sleep(cycles) def _load_cudart(): # First check the main program for CUDA symbols if platform.system() == 'Windows': lib = find_cuda_windows_lib() else: lib = ctypes.cdll.LoadLibrary(None) if hasattr(lib, 'cudaGetErrorName'): return lib raise RuntimeError( "couldn't find libcudart. Make sure CUDA libraries are installed in a" "default location, or that they're in {}." .format('DYLD_LIBRARY_PATH' if platform.system() == 'Darwin' else 'LD_LIBRARY_PATH')) def _check_driver(): if not hasattr(torch._C, '_cuda_isDriverSufficient'): raise AssertionError("Torch not compiled with CUDA enabled") if not torch._C._cuda_isDriverSufficient(): if torch._C._cuda_getDriverVersion() == 0: # found no NVIDIA driver on the system raise AssertionError(""" Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx""") else: # TODO: directly link to the alternative bin that needs install raise AssertionError(""" The NVIDIA driver on your system is too old (found version {}). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver.""".format(str(torch._C._cuda_getDriverVersion()))) def _check_capability(): incorrect_binary_warn = """ Found GPU%d %s which requires CUDA_VERSION >= %d for optimal performance and fast startup time, but your PyTorch was compiled with CUDA_VERSION %d. Please install the correct PyTorch binary using instructions from https://pytorch.org """ old_gpu_warn = """ Found GPU%d %s which is of cuda capability %d.%d. PyTorch no longer supports this GPU because it is too old. """ CUDA_VERSION = torch._C._cuda_getCompiledVersion() for d in range(device_count()): capability = get_device_capability(d) major = capability[0] name = get_device_name(d) if CUDA_VERSION < 8000 and major >= 6: warnings.warn(incorrect_binary_warn % (d, name, 8000, CUDA_VERSION)) elif CUDA_VERSION < 9000 and major >= 7: warnings.warn(incorrect_binary_warn % (d, name, 9000, CUDA_VERSION)) elif capability == (3, 0) or major < 3: warnings.warn(old_gpu_warn % (d, name, major, capability[1])) def _lazy_call(callable): if _initialized: callable() else: # Don't store the actual traceback to avoid memory cycle _queued_calls.append((callable, traceback.format_stack())) _lazy_call(_check_capability) class DeferredCudaCallError(Exception): pass
[docs]def init(): r"""Initialize PyTorch's CUDA state. You may need to call this explicitly if you are interacting with PyTorch via its C API, as Python bindings for CUDA functionality will not be until this initialization takes place. Ordinary users should not need this, as all of PyTorch's CUDA methods automatically initialize CUDA state on-demand. Does nothing if the CUDA state is already initialized. """ _lazy_init()
def _lazy_init(): global _initialized, _cudart, _original_pid, _queued_calls if _initialized: return if _in_bad_fork: from sys import version_info if version_info < (3, 4): msg = ("To use CUDA with multiprocessing, you must use Python " "3.4+ and the 'spawn' start method") else: msg = ("To use CUDA with multiprocessing, you must use the " "'spawn' start method") raise RuntimeError( "Cannot re-initialize CUDA in forked subprocess. " + msg) _check_driver() torch._C._cuda_init() _cudart = _load_cudart() _cudart.cudaGetErrorName.restype = ctypes.c_char_p _cudart.cudaGetErrorString.restype = ctypes.c_char_p _original_pid = os.getpid() _initialized = True # Important to do this after _initialized, since some queued calls # may themselves call _lazy_init() for queued_call, orig_traceback in _queued_calls: try: queued_call() except Exception as e: msg = ("CUDA call failed lazily at initialization with error: {}\n\n" "CUDA call was originally invoked at:\n\n{}").format(str(e), orig_traceback) raise_from(DeferredCudaCallError(msg), e) def _after_fork(arg): global _initialized, _in_bad_fork if _initialized and _original_pid != os.getpid(): _initialized = False _in_bad_fork = True _CudaBase.__new__ = _lazy_new _register_after_fork(_after_fork, _after_fork) def cudart(): _lazy_init() return _cudart class cudaStatus(object): SUCCESS = 0 ERROR_NOT_READY = 34 class CudaError(RuntimeError): def __init__(self, code): msg = cudart().cudaGetErrorString(code).decode('utf-8') super(CudaError, self).__init__('{0} ({1})'.format(msg, code)) def check_error(res): if res != cudaStatus.SUCCESS: raise CudaError(res)
[docs]class device(object): r"""Context-manager that changes the selected device. Arguments: device (torch.device or int): device index to select. It's a no-op if this argument is a negative integer or ``None``. """ def __init__(self, device): self.idx = _get_device_index(device, optional=True) self.prev_idx = -1 def __enter__(self): if self.idx is -1: return self.prev_idx = torch._C._cuda_getDevice() if self.prev_idx != self.idx: torch._C._cuda_setDevice(self.idx) _lazy_init() def __exit__(self, *args): if self.prev_idx != self.idx: torch._C._cuda_setDevice(self.prev_idx) return False
[docs]class device_of(device): r"""Context-manager that changes the current device to that of given object. You can use both tensors and storages as arguments. If a given object is not allocated on a GPU, this is a no-op. Arguments: obj (Tensor or Storage): object allocated on the selected device. """ def __init__(self, obj): idx = obj.get_device() if obj.is_cuda else -1 super(device_of, self).__init__(idx)
[docs]def set_device(device): r"""Sets the current device. Usage of this function is discouraged in favor of :any:`device`. In most cases it's better to use ``CUDA_VISIBLE_DEVICES`` environmental variable. Arguments: device (torch.device or int): selected device. This function is a no-op if this argument is negative. """ device = _get_device_index(device) if device >= 0: torch._C._cuda_setDevice(device)
[docs]def get_device_name(device): r"""Gets the name of a device. Arguments: device (torch.device or int, optional): device for which to return the name. This function is a no-op if this argument is a negative integer. Uses the current device, given by :meth:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ return get_device_properties(device).name
[docs]def get_device_capability(device): r"""Gets the cuda capability of a device. Arguments: device (torch.device or int, optional): device for which to return the device capability. This function is a no-op if this argument is a negative integer. Uses the current device, given by :meth:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). Returns: tuple(int, int): the major and minor cuda capability of the device """ prop = get_device_properties(device) return prop.major, prop.minor
def get_device_properties(device): if not _initialized: init() # will define _get_device_properties and _CudaDeviceProperties device = _get_device_index(device, optional=True) if device < 0 or device >= device_count(): raise AssertionError("Invalid device id") return _get_device_properties(device)
[docs]@contextlib.contextmanager def stream(stream): r"""Context-manager that selects a given stream. All CUDA kernels queued within its context will be enqueued on a selected stream. Arguments: stream (Stream): selected stream. This manager is a no-op if it's ``None``. .. note:: Streams are per-device, and this function changes the "current stream" only for the currently selected device. It is illegal to select a stream that belongs to a different device. """ if stream is None: yield return prev_stream = current_stream() torch._C._cuda_setStream(stream._cdata) try: yield finally: torch._C._cuda_setStream(prev_stream._cdata)
[docs]def device_count(): """Returns the number of GPUs available.""" if is_available(): return torch._C._cuda_getDeviceCount() else: return 0
[docs]def current_device(): r"""Returns the index of a currently selected device.""" _lazy_init() return torch._C._cuda_getDevice()
[docs]def synchronize(): r"""Waits for all kernels in all streams on current device to complete.""" _lazy_init() return torch._C._cuda_synchronize()
[docs]def current_stream(): r"""Returns a currently selected :class:`Stream`.""" _lazy_init() return torch.cuda.Stream(_cdata=torch._C._cuda_getCurrentStream())
[docs]def current_blas_handle(): r"""Returns cublasHandle_t pointer to current cuBLAS handle""" _lazy_init() return torch._C._cuda_getCurrentBlasHandle()
[docs]def empty_cache(): r"""Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in `nvidia-smi`. .. note:: :meth:`~torch.cuda.empty_cache` doesn't increase the amount of GPU memory available for PyTorch. See :ref:`cuda-memory-management` for more details about GPU memory management. """ if _initialized: torch._C._cuda_emptyCache()
[docs]def memory_allocated(device=None): r"""Returns the current GPU memory usage by tensors in bytes for a given device. Arguments: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :meth:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: This is likely less than the amount shown in `nvidia-smi` since some unused memory can be held by the caching allocator and some context needs to be created on GPU. See :ref:`cuda-memory-management` for more details about GPU memory management. """ device = _get_device_index(device, optional=True) return torch._C._cuda_memoryAllocated(device)
[docs]def max_memory_allocated(device=None): r"""Returns the maximum GPU memory usage by tensors in bytes for a given device. Arguments: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :meth:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """ device = _get_device_index(device, optional=True) return torch._C._cuda_maxMemoryAllocated(device)
[docs]def memory_cached(device=None): r"""Returns the current GPU memory managed by the caching allocator in bytes for a given device. Arguments: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :meth:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """ device = _get_device_index(device, optional=True) return torch._C._cuda_memoryCached(device)
[docs]def max_memory_cached(device=None): r"""Returns the maximum GPU memory managed by the caching allocator in bytes for a given device. Arguments: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :meth:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). .. note:: See :ref:`cuda-memory-management` for more details about GPU memory management. """ device = _get_device_index(device, optional=True) return torch._C._cuda_maxMemoryCached(device)
def _host_allocator(): _lazy_init() return torch._C._cuda_cudaHostAllocator() @contextlib.contextmanager def _free_mutex(): torch._C._cuda_lock_mutex() try: yield finally: torch._C._cuda_unlock_mutex() from .random import * ################################################################################ # Define Storage and Tensor classes ################################################################################ from ..storage import _StorageBase def _dummy_type(name): def init_err(self): class_name = self.__class__.__name__ raise RuntimeError( "Tried to instantiate dummy base class {}".format(class_name)) return type(storage_name, (object,), {"__init__": init_err}) if not hasattr(torch._C, 'CudaDoubleStorageBase'): # Define dummy base classes for t in ['Double', 'Float', 'Long', 'Int', 'Short', 'Char', 'Byte', 'Half']: storage_name = 'Cuda{0}StorageBase'.format(t) tensor_name = 'Cuda{0}TensorBase'.format(t) torch._C.__dict__[storage_name] = _dummy_type(storage_name) torch._C.__dict__[tensor_name] = _dummy_type(tensor_name) torch._C.__dict__['_CudaStreamBase'] = _dummy_type('CudaStreamBase') @staticmethod def _lazy_new(cls, *args, **kwargs): _lazy_init() # We need this method only for lazy init, so we can remove it del _CudaBase.__new__ return super(_CudaBase, cls).__new__(cls, *args, **kwargs) class _CudaBase(object): is_cuda = True is_sparse = False def type(self, *args, **kwargs): with device(self.get_device()): return super(_CudaBase, self).type(*args, **kwargs) __new__ = _lazy_new class DoubleStorage(_CudaBase, torch._C.CudaDoubleStorageBase, _StorageBase): pass class FloatStorage(_CudaBase, torch._C.CudaFloatStorageBase, _StorageBase): pass class LongStorage(_CudaBase, torch._C.CudaLongStorageBase, _StorageBase): pass class IntStorage(_CudaBase, torch._C.CudaIntStorageBase, _StorageBase): pass class ShortStorage(_CudaBase, torch._C.CudaShortStorageBase, _StorageBase): pass class CharStorage(_CudaBase, torch._C.CudaCharStorageBase, _StorageBase): pass class ByteStorage(_CudaBase, torch._C.CudaByteStorageBase, _StorageBase): pass class HalfStorage(_CudaBase, torch._C.CudaHalfStorageBase, _StorageBase): pass torch._storage_classes.add(DoubleStorage) torch._storage_classes.add(FloatStorage) torch._storage_classes.add(LongStorage) torch._storage_classes.add(IntStorage) torch._storage_classes.add(ShortStorage) torch._storage_classes.add(CharStorage) torch._storage_classes.add(ByteStorage) torch._storage_classes.add(HalfStorage) from . import sparse from . import profiler from . import nvtx from .streams import Stream, Event

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources