Source code for torch.distributions.binomial
from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
[docs]class Binomial(Distribution):
r"""
Creates a Binomial distribution parameterized by :attr:`total_count` and
either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
broadcastable with :attr:`probs`/:attr:`logits`.
Example::
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
>>> x = m.sample()
tensor([ 0., 22., 71., 100.])
>>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
>>> x = m.sample()
tensor([[ 4., 5.],
[ 7., 6.]])
Args:
total_count (int or Tensor): number of Bernoulli trials
probs (Tensor): Event probabilities
logits (Tensor): Event log-odds
"""
arg_constraints = {'total_count': constraints.nonnegative_integer,
'probs': constraints.unit_interval,
'logits': constraints.real}
has_enumerate_support = True
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
if (probs is None) == (logits is None):
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
if probs is not None:
self.total_count, self.probs, = broadcast_all(total_count, probs)
self.total_count = self.total_count.type_as(self.logits)
is_scalar = isinstance(self.probs, Number)
else:
self.total_count, self.logits, = broadcast_all(total_count, logits)
self.total_count = self.total_count.type_as(self.logits)
is_scalar = isinstance(self.logits, Number)
self._param = self.probs if probs is not None else self.logits
if is_scalar:
batch_shape = torch.Size()
else:
batch_shape = self._param.size()
super(Binomial, self).__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Binomial, _instance)
batch_shape = torch.Size(batch_shape)
new.total_count = self.total_count.expand(batch_shape)
if 'probs' in self.__dict__:
new.probs = self.probs.expand(batch_shape)
new._param = new.probs
else:
new.logits = self.logits.expand(batch_shape)
new._param = new.logits
super(Binomial, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._param.new(*args, **kwargs)
@constraints.dependent_property
def support(self):
return constraints.integer_interval(0, self.total_count)
@property
def mean(self):
return self.total_count * self.probs
@property
def variance(self):
return self.total_count * self.probs * (1 - self.probs)
[docs] @lazy_property
def logits(self):
return probs_to_logits(self.probs, is_binary=True)
[docs] @lazy_property
def probs(self):
return logits_to_probs(self.logits, is_binary=True)
@property
def param_shape(self):
return self._param.size()
[docs] def sample(self, sample_shape=torch.Size()):
with torch.no_grad():
max_count = max(int(self.total_count.max()), 1)
shape = self._extended_shape(sample_shape) + (max_count,)
bernoullis = torch.bernoulli(self.probs.unsqueeze(-1).expand(shape))
if self.total_count.min() != max_count:
arange = torch.arange(max_count, dtype=self._param.dtype, device=self._param.device)
mask = arange >= self.total_count.unsqueeze(-1)
if torch._C._get_tracing_state():
# [JIT WORKAROUND] lack of support for .masked_fill_()
bernoullis[mask.expand(shape)] = 0.
else:
bernoullis.masked_fill_(mask, 0.)
return bernoullis.sum(dim=-1)
[docs] def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
log_factorial_n = torch.lgamma(self.total_count + 1)
log_factorial_k = torch.lgamma(value + 1)
log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
max_val = (-self.logits).clamp(min=0.0)
# Note that: torch.log1p(-self.probs)) = max_val - torch.log1p((self.logits + 2 * max_val).exp()))
return (log_factorial_n - log_factorial_k - log_factorial_nmk +
value * self.logits + self.total_count * max_val -
self.total_count * torch.log1p((self.logits + 2 * max_val).exp()))
[docs] def enumerate_support(self, expand=True):
total_count = int(self.total_count.max())
if not self.total_count.min() == total_count:
raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
values = values.view((-1,) + (1,) * len(self._batch_shape))
if expand:
values = values.expand((-1,) + self._batch_shape)
return values