Shortcuts

Source code for torch.multiprocessing

"""
torch.multiprocessing is a wrapper around the native :mod:`multiprocessing`
module. It registers custom reducers, that use shared memory to provide shared
views on the same data in different processes. Once the tensor/storage is moved
to shared_memory (see :func:`~torch.Tensor.share_memory_`), it will be possible
to send it to other processes without making any copies.

The API is 100% compatible with the original module - it's enough to change
``import multiprocessing`` to ``import torch.multiprocessing`` to have all the
tensors sent through the queues or shared via other mechanisms, moved to shared
memory.

Because of the similarity of APIs we do not document most of this package
contents, and we recommend referring to very good docs of the original module.
"""
import torch
import sys
from .reductions import init_reductions
import multiprocessing

__all__ = ['set_sharing_strategy', 'get_sharing_strategy',
           'get_all_sharing_strategies']


from multiprocessing import *


__all__ += multiprocessing.__all__


# This call adds a Linux specific prctl(2) wrapper function to this module.
# See https://github.com/pytorch/pytorch/pull/14391 for more information.
torch._C._multiprocessing_init()


if sys.version_info < (3, 3):
    """Override basic classes in Python 2.7 and Python 3.3 to use ForkingPickler
    for serialization. Later versions of Python already use ForkingPickler."""
    from .queue import Queue, SimpleQueue
    from .pool import Pool


"""Add helper function to spawn N processes and wait for completion of any of
them. This depends `mp.get_context` which was added in Python 3.4."""
from .spawn import spawn, SpawnContext


if sys.platform == 'darwin' or sys.platform == 'win32':
    _sharing_strategy = 'file_system'
    _all_sharing_strategies = {'file_system'}
else:
    _sharing_strategy = 'file_descriptor'
    _all_sharing_strategies = {'file_descriptor', 'file_system'}


[docs]def set_sharing_strategy(new_strategy): """Sets the strategy for sharing CPU tensors. Arguments: new_strategy (str): Name of the selected strategy. Should be one of the values returned by :func:`get_all_sharing_strategies()`. """ global _sharing_strategy assert new_strategy in _all_sharing_strategies _sharing_strategy = new_strategy
[docs]def get_sharing_strategy(): """Returns the current strategy for sharing CPU tensors.""" return _sharing_strategy
[docs]def get_all_sharing_strategies(): """Returns a set of sharing strategies supported on a current system.""" return _all_sharing_strategies
init_reductions()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources