import math
import random
import warnings
import torch
[docs]def calculate_gain(nonlinearity, param=None):
r"""Return the recommended gain value for the given nonlinearity function.
The values are as follows:
================= ====================================================
nonlinearity gain
================= ====================================================
Linear / Identity :math:`1`
Conv{1,2,3}D :math:`1`
Sigmoid :math:`1`
Tanh :math:`\frac{5}{3}`
ReLU :math:`\sqrt{2}`
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
================= ====================================================
Args:
nonlinearity: the non-linear function (`nn.functional` name)
param: optional parameter for the non-linear function
Examples:
>>> gain = nn.init.calculate_gain('leaky_relu')
"""
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
return 1
elif nonlinearity == 'tanh':
return 5.0 / 3
elif nonlinearity == 'relu':
return math.sqrt(2.0)
elif nonlinearity == 'leaky_relu':
if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
# True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param))
return math.sqrt(2.0 / (1 + negative_slope ** 2))
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
[docs]def normal_(tensor, mean=0, std=1):
r"""Fills the input Tensor with values drawn from the normal
distribution :math:`\mathcal{N}(\text{mean}, \text{std})`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.normal_(w)
"""
with torch.no_grad():
return tensor.normal_(mean, std)
[docs]def constant_(tensor, val):
r"""Fills the input Tensor with the value :math:`\text{val}`.
Args:
tensor: an n-dimensional `torch.Tensor`
val: the value to fill the tensor with
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.constant_(w, 0.3)
"""
with torch.no_grad():
return tensor.fill_(val)
def ones_(tensor):
r"""Fills the input Tensor with ones`.
Args:
tensor: an n-dimensional `torch.Tensor`
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.ones_(w)
"""
with torch.no_grad():
return tensor.fill_(1)
def zeros_(tensor):
r"""Fills the input Tensor with zeros`.
Args:
tensor: an n-dimensional `torch.Tensor`
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.zeros_(w)
"""
with torch.no_grad():
return tensor.zero_()
[docs]def eye_(tensor):
r"""Fills the 2-dimensional input `Tensor` with the identity
matrix. Preserves the identity of the inputs in `Linear` layers, where as
many inputs are preserved as possible.
Args:
tensor: a 2-dimensional `torch.Tensor`
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.eye_(w)
"""
if tensor.ndimension() != 2:
raise ValueError("Only tensors with 2 dimensions are supported")
with torch.no_grad():
torch.eye(*tensor.shape, out=tensor, requires_grad=tensor.requires_grad)
return tensor
[docs]def dirac_(tensor):
r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Dirac
delta function. Preserves the identity of the inputs in `Convolutional`
layers, where as many input channels are preserved as possible.
Args:
tensor: a {3, 4, 5}-dimensional `torch.Tensor`
Examples:
>>> w = torch.empty(3, 16, 5, 5)
>>> nn.init.dirac_(w)
"""
dimensions = tensor.ndimension()
if dimensions not in [3, 4, 5]:
raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")
sizes = tensor.size()
min_dim = min(sizes[0], sizes[1])
with torch.no_grad():
tensor.zero_()
for d in range(min_dim):
if dimensions == 3: # Temporal convolution
tensor[d, d, tensor.size(2) // 2] = 1
elif dimensions == 4: # Spatial convolution
tensor[d, d, tensor.size(2) // 2, tensor.size(3) // 2] = 1
else: # Volumetric convolution
tensor[d, d, tensor.size(2) // 2, tensor.size(3) // 2, tensor.size(4) // 2] = 1
return tensor
def _calculate_fan_in_and_fan_out(tensor):
dimensions = tensor.ndimension()
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
if dimensions == 2: # Linear
fan_in = tensor.size(1)
fan_out = tensor.size(0)
else:
num_input_fmaps = tensor.size(1)
num_output_fmaps = tensor.size(0)
receptive_field_size = 1
if tensor.dim() > 2:
receptive_field_size = tensor[0][0].numel()
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
[docs]def xavier_normal_(tensor, gain=1):
r"""Fills the input `Tensor` with values according to the method
described in "Understanding the difficulty of training deep feedforward
neural networks" - Glorot, X. & Bengio, Y. (2010), using a normal
distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std})` where
.. math::
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}
Also known as Glorot initialization.
Args:
tensor: an n-dimensional `torch.Tensor`
gain: an optional scaling factor
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.xavier_normal_(w)
"""
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
with torch.no_grad():
return tensor.normal_(0, std)
def _calculate_correct_fan(tensor, mode):
mode = mode.lower()
valid_modes = ['fan_in', 'fan_out']
if mode not in valid_modes:
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
return fan_in if mode == 'fan_in' else fan_out
[docs]def kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'):
r"""Fills the input `Tensor` with values according to the method
described in "Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification" - He, K. et al. (2015), using a
normal distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std})` where
.. math::
\text{std} = \sqrt{\frac{2}{(1 + a^2) \times \text{fan\_in}}}
Also known as He initialization.
Args:
tensor: an n-dimensional `torch.Tensor`
a: the negative slope of the rectifier used after this layer (0 for ReLU
by default)
mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in`
preserves the magnitude of the variance of the weights in the
forward pass. Choosing `fan_out` preserves the magnitudes in the
backwards pass.
nonlinearity: the non-linear function (`nn.functional` name),
recommended to use only with 'relu' or 'leaky_relu' (default).
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
"""
fan = _calculate_correct_fan(tensor, mode)
gain = calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
with torch.no_grad():
return tensor.normal_(0, std)
[docs]def orthogonal_(tensor, gain=1):
r"""Fills the input `Tensor` with a (semi) orthogonal matrix, as
described in "Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks" - Saxe, A. et al. (2013). The input tensor must have
at least 2 dimensions, and for tensors with more than 2 dimensions the
trailing dimensions are flattened.
Args:
tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`
gain: optional scaling factor
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.orthogonal_(w)
"""
if tensor.ndimension() < 2:
raise ValueError("Only tensors with 2 or more dimensions are supported")
rows = tensor.size(0)
cols = tensor[0].numel()
flattened = tensor.new(rows, cols).normal_(0, 1)
if rows < cols:
flattened.t_()
# Compute the qr factorization
q, r = torch.qr(flattened)
# Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
d = torch.diag(r, 0)
ph = d.sign()
q *= ph
if rows < cols:
q.t_()
with torch.no_grad():
tensor.view_as(q).copy_(q)
tensor.mul_(gain)
return tensor
[docs]def sparse_(tensor, sparsity, std=0.01):
r"""Fills the 2D input `Tensor` as a sparse matrix, where the
non-zero elements will be drawn from the normal distribution
:math:`\mathcal{N}(0, 0.01)`, as described in "Deep learning via
Hessian-free optimization" - Martens, J. (2010).
Args:
tensor: an n-dimensional `torch.Tensor`
sparsity: The fraction of elements in each column to be set to zero
std: the standard deviation of the normal distribution used to generate
the non-zero values
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.sparse_(w, sparsity=0.1)
"""
if tensor.ndimension() != 2:
raise ValueError("Only tensors with 2 dimensions are supported")
rows, cols = tensor.shape
num_zeros = int(math.ceil(sparsity * rows))
with torch.no_grad():
tensor.normal_(0, std)
for col_idx in range(cols):
row_indices = torch.randperm(rows)
zero_indices = row_indices[:num_zeros]
tensor[zero_indices, col_idx] = 0
return tensor
# for backward compatibility
def _make_deprecate(meth):
new_name = meth.__name__
old_name = new_name[:-1]
def deprecated_init(*args, **kwargs):
warnings.warn("nn.init.{} is now deprecated in favor of nn.init.{}."
.format(old_name, new_name), stacklevel=2)
return meth(*args, **kwargs)
deprecated_init.__doc__ = r"""
{old_name}(...)
.. warning::
This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`.
See :func:`~torch.nn.init.{new_name}` for details.""".format(
old_name=old_name, new_name=new_name)
deprecated_init.__name__ = old_name
return deprecated_init
uniform = _make_deprecate(uniform_)
normal = _make_deprecate(normal_)
constant = _make_deprecate(constant_)
eye = _make_deprecate(eye_)
dirac = _make_deprecate(dirac_)
xavier_uniform = _make_deprecate(xavier_uniform_)
xavier_normal = _make_deprecate(xavier_normal_)
kaiming_uniform = _make_deprecate(kaiming_uniform_)
kaiming_normal = _make_deprecate(kaiming_normal_)
orthogonal = _make_deprecate(orthogonal_)
sparse = _make_deprecate(sparse_)