# -*- coding: utf-8 -*-
from collections import namedtuple
import torch
from . import Sequential, ModuleList, Linear
from .module import Module
from ..functional import log_softmax
_ASMoutput = namedtuple('ASMoutput', ['output', 'loss'])
[docs]class AdaptiveLogSoftmaxWithLoss(Module):
r"""Efficient softmax approximation as described in
`Efficient softmax approximation for GPUs`_ by Edouard Grave, Armand Joulin,
Moustapha Cissé, David Grangier, and Hervé Jégou.
Adaptive softmax is an approximate strategy for training models with large
output spaces. It is most effective when the label distribution is highly
imbalanced, for example in natural language modelling, where the word
frequency distribution approximately follows the `Zipf's law`_.
Adaptive softmax partitions the labels into several clusters, according to
their frequency. These clusters may contain different number of targets
each.
Additionally, clusters containing less frequent labels assign lower
dimensional embeddings to those labels, which speeds up the computation.
For each minibatch, only clusters for which at least one target is
present are evaluated.
The idea is that the clusters which are accessed frequently
(like the first one, containing most frequent labels), should also be cheap
to compute -- that is, contain a small number of assigned labels.
We highly recommend taking a look at the original paper for more details.
* :attr:`cutoffs` should be an ordered Sequence of integers sorted
in the increasing order.
It controls number of clusters and the partitioning of targets into
clusters. For example setting ``cutoffs = [10, 100, 1000]``
means that first `10` targets will be assigned
to the 'head' of the adaptive softmax, targets `11, 12, ..., 100` will be
assigned to the first cluster, and targets `101, 102, ..., 1000` will be
assigned to the second cluster, while targets
`1001, 1002, ..., n_classes - 1` will be assigned
to the last, third cluster
* :attr:`div_value` is used to compute the size of each additional cluster,
which is given as
:math:`\left\lfloor\frac{in\_features}{div\_value^{idx}}\right\rfloor`,
where :math:`idx` is the cluster index (with clusters
for less frequent words having larger indices,
and indices starting from :math:`1`).
* :attr:`head_bias` if set to True, adds a bias term to the 'head' of the
adaptive softmax. See paper for details. Set to False in the official
implementation.
.. warning::
Labels passed as inputs to this module should be sorted accoridng to
their frequency. This means that the most frequent label should be
represented by the index `0`, and the least frequent
label should be represented by the index `n_classes - 1`.
.. note::
This module returns a ``NamedTuple`` with ``output``
and ``loss`` fields. See further documentation for details.
.. note::
To compute log-probabilities for all classes, the ``log_prob``
method can be used.
Args:
in_features (int): Number of features in the input tensor
n_classes (int): Number of classes in the dataset.
cutoffs (Sequence): Cutoffs used to assign targets to their buckets.
div_value (float, optional): value used as an exponent to compute sizes
of the clusters. Default: 4.0
Returns:
``NamedTuple`` with ``output`` and ``loss`` fields:
* **output** is a Tensor of size ``N`` containing computed target
log probabilities for each example
* **loss** is a Scalar representing the computed negative
log likelihood loss
Shape:
- input: :math:`(N, in\_features)`
- target: :math:`(N)` where each value satisfies :math:`0 <= target[i] <= n\_classes`
- output: :math:`(N)`
- loss: ``Scalar``
.. _Efficient softmax approximation for GPUs:
https://arxiv.org/abs/1609.04309
.. _Zipf's law:
https://en.wikipedia.org/wiki/Zipf%27s_law
"""
def __init__(self, in_features, n_classes, cutoffs, div_value=4., head_bias=False):
super(AdaptiveLogSoftmaxWithLoss, self).__init__()
cutoffs = list(cutoffs)
if (cutoffs != sorted(cutoffs)) \
or (min(cutoffs) <= 0) \
or (max(cutoffs) >= (n_classes - 1)) \
or (len(set(cutoffs)) != len(cutoffs)) \
or any([int(c) != c for c in cutoffs]):
raise ValueError("cutoffs should be a sequence of unique, positive "
"integers sorted in an increasing order, where "
"each value is between 1 and n_classes-1")
self.in_features = in_features
self.n_classes = n_classes
self.cutoffs = cutoffs + [n_classes]
self.div_value = div_value
self.head_bias = head_bias
self.shortlist_size = self.cutoffs[0]
self.n_clusters = len(self.cutoffs) - 1
self.head_size = self.shortlist_size + self.n_clusters
self.head = Linear(self.in_features, self.head_size, bias=self.head_bias)
self.tail = ModuleList()
for i in range(self.n_clusters):
hsz = int(self.in_features // (self.div_value ** (i + 1)))
osz = self.cutoffs[i + 1] - self.cutoffs[i]
projection = Sequential(
Linear(self.in_features, hsz, bias=False),
Linear(hsz, osz, bias=False)
)
self.tail.append(projection)
def reset_parameters(self):
self.head.reset_parameters()
for i2h, h2o in self.tail:
i2h.reset_parameters()
h2o.reset_parameters()
def forward(self, input, target):
if input.size(0) != target.size(0):
raise RuntimeError('Input and target should have the same size '
'in the batch dimension.')
used_rows = 0
batch_size = target.size(0)
output = input.new_zeros(batch_size)
gather_inds = target.new_empty(batch_size)
cutoff_values = [0] + self.cutoffs
for i in range(len(cutoff_values) - 1):
low_idx = cutoff_values[i]
high_idx = cutoff_values[i + 1]
target_mask = (target >= low_idx) & (target < high_idx)
row_indices = target_mask.nonzero().squeeze()
if row_indices.numel() == 0:
continue
if i == 0:
gather_inds.index_copy_(0, row_indices, target[target_mask])
else:
relative_target = target[target_mask] - low_idx
input_subset = input.index_select(0, row_indices)
cluster_output = self.tail[i - 1](input_subset)
cluster_index = self.shortlist_size + i - 1
gather_inds.index_fill_(0, row_indices, cluster_index)
cluster_logprob = log_softmax(cluster_output, dim=1)
local_logprob = cluster_logprob.gather(1, relative_target.unsqueeze(1))
output.index_copy_(0, row_indices, local_logprob.squeeze(1))
used_rows += row_indices.numel()
if used_rows != batch_size:
raise RuntimeError("Target values should be in [0, {}], "
"but values in range [{}, {}] "
"were found. ".format(self.n_classes - 1,
target.min().item(),
target.max().item()))
head_output = self.head(input)
head_logprob = log_softmax(head_output, dim=1)
output += head_logprob.gather(1, gather_inds.unsqueeze(1)).squeeze()
loss = (-output).mean()
return _ASMoutput(output, loss)
def _get_full_log_prob(self, input, head_output):
""" Given input tensor, and output of `self.head`,
compute the log of the full distribution """
out = input.new_empty((head_output.size(0), self.n_classes))
head_logprob = log_softmax(head_output, dim=1)
out[:, :self.shortlist_size] = head_logprob[:, :self.shortlist_size]
for i, (start_idx, stop_idx) in enumerate(zip(self.cutoffs, self.cutoffs[1:])):
cluster_output = self.tail[i](input)
cluster_logprob = log_softmax(cluster_output, dim=1)
output_logprob = cluster_logprob + head_logprob[:, self.shortlist_size + i].unsqueeze(1)
out[:, start_idx:stop_idx] = output_logprob
return out
[docs] def log_prob(self, input):
r""" Computes log probabilities for all :math:`n\_classes`
Args:
input (Tensor): a minibatch of examples
Returns:
log-probabilities of for each class :math:`c`
in range :math:`0 <= c <= n\_classes`, where :math:`n\_classes` is a
parameter passed to ``AdaptiveLogSoftmaxWithLoss`` constructor.
Shape:
- Input: :math:`(N, in\_features)`
- Output: :math:`(N, n\_classes)`
"""
head_output = self.head(input)
return self._get_full_log_prob(input, head_output)
[docs] def predict(self, input):
r""" This is equivalent to `self.log_pob(input).argmax(dim=1)`,
but is more efficient in some cases.
Args:
input (Tensor): a minibatch of examples
Returns:
output (Tensor): a class with the highest probability for each example
Shape:
- Input: :math:`(N, in\_features)`
- Output: :math:`(N)`
"""
head_output = self.head(input)
output = torch.argmax(head_output, dim=1)
not_in_shortlist = (output >= self.shortlist_size)
all_in_shortlist = not (not_in_shortlist.any())
if all_in_shortlist:
return output
elif not_in_shortlist.all():
log_prob = self._get_full_log_prob(input, head_output)
return torch.argmax(log_prob, dim=1)
else:
log_prob = self._get_full_log_prob(input[not_in_shortlist],
head_output[not_in_shortlist])
output[not_in_shortlist] = torch.argmax(log_prob, dim=1)
return output